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,- ABSTRACT

The research presents a study of the maximal coverage p-median and of'the

set covering facility location problems as applied to the GEODSS location problem.

The classical single-objective mathematical formulations of the p-median and set

covering problems are converted into network-flow formulations and various solu-

tion method"giet are developed using a scaled-down version of the GEODSS

problem.

The next step bf the research is the introduction of a second criterion

function into the problem. This second function consists of minimizing the sum of

the variance in coverage at the selected locations. 'The research reveals the deficien-

cies of MOLP (multiobjective linear programming) techniques in generating the.

efficient frontier of an integer problem. A"brute-force Ssolution algorithm is devel-

oped and programmed in FORTRAN 77 to generate all feasible alternatives,

determine which of these are non-dominated, and then provide an ordered list of

alternatives using paired comparisons with the ideal.

A case study is presented which shows the difficulty in finding a feasible

one-site solution given the need to observe a wide segment of the geostationary belt.

The example also shows that, for a given satellite population, the optimal alternative

must for similar reasons include two southerly locations. The example reveals that

while two-site solutions therefore exclude northerly locations, three-site solutions

will usually include a northerly location. 4-o- -

ix



THE OPTIMAL LOCATION OF

GEODSS SENSORS IN CANADA

L INTRODUCTION

1. Background

The military mission of space surveillance, as defined in United States Space

Command (USSPACECOM) Regulation 55-12, is to detect, track, identify, and

catalog all man-made objects in space (46:13). To accomplish this mission, a network

of 26 ground-based sensors dispersed around the globe provide observational data to

the Space Surveillance Center (SSC) located in the Cheyenne Mountain Complex in

Colorado Springs. The SSC computers analyze this data to determine and catalog the

location of all man-made satellites in space.

Canada's participation in the space surveillance mission dates back to 1961

with the installation of the first Canadian Baker-Nunn system (an optical film

camera) in Cold Lake, Alberta. Later, in 1976, a second Canadian Baker-Nunn site

was established in St Margarets, New Brunswick. Space surveillance operations have

since been discontinued in Cold Lake but continue today in St Margarets (13:139).

The Ground-Based-Electro-Optica I Deep-Space Surveillance (GEODSS) system

(an optical video camera) is the replacement for the Baker-Nunn. Four GEODSS

systems are located around the world today with a fifth system (GEODSS 5) sched-

uled for installation in Portugal. At the request of the Commander in Chief of



USSPACECOM, the Canadian Forces have undertaken to operate the St Margarets

Baker-Nunn until GEODSS 5 is operational (42).

Canadian participation in the space surveillance mission once GEODSS 5 is

operational is being debated by USSPACECOM and Canadian National Defence

Headquarters (NDHQ). Within the conte. .f these discussions, the option of an

autonomous network of GEODSS sensors located in Canada is being considered. The

NDHQ Directorate of Air Requirements (DAR), the sponsor for this research, has

requested that the best locations in Canada for a one-site, two-site, and three-site

GEODSS network be determined (18).

2. Research Problem

The objective of this research is to develop a methodology to determine the

optimal sensor location(s) of a one-site, two-site, and three-site GEODSS sensor

network in Canada.

2.1 Research Sub-Objectives. To attain the above research objective, the

following sub-objectives needed to be accomplished:

a. Establish a list of candidate site locations.

b. Obtain the probability that the weather is favorable to GEODSS observa-

tions at each of the candidate locations for every month of the year.

0 Obtain GEODSS system specifications.

* Obtain climatological data.

c. Determine the number of observation opportunities at each candidate

location for every month of the year, for every satellite type.

" Define an observation opportunity.

* Define the satellite target population.

* Obtain software to determine the transit frequency.

2



d. Calcuiate the expected number of useable observation opportunities at

each candidate location for every month of the year based on the proba-

bility of favorable weather.

e. Formulate multiple-criteria facility-location and models to determine the

optimal location of the GEODSS sensor(s).

0 Define the alternative space.

• Define the criteria set.

0 Generate the non-dominated set.

* Define an appropriate preference structure.

3. Scope

The emphasis of this research is to provide the sponsor with a "user-friendly"

solution algorithm. The methodology is presented in Chapter VI through the use of

an example calculation using actual data. The end-product is a FORTRAN-based

software package that orders the feasible set by ascending order of the Manhattan

metric distance to the ideal. The ideal is defined as the best attainable value of two

defined criterion functions. For each alternative, the Manhattan metric deviation is

the sum of the differences from the ideal of each criterion function.

4. Assumptions end Limitations

An assumption is made that operations research scientists at NDHQ will be

available to assist in the execution and interpretation of the solution algorithm.

Also, coordination with Meteorological Officers is crucial to the selection of

candidate locations and the determination of climatological probabilities.

The research does not addiess political factors that might arise in selecting

optimal locations for the tracking of satellites.

3



1I. LITERATURE REVIEW

The purpose of this chapter is to present a synopsis of recent scientific

literature that is pertinent to this research. Included are discussions on multiple

criteria optimization, facility location theory, network-flow programming, climatolo-

gy, optical transmission theory, and orbital mechanics. These discussions are not

intended as comprehensive treatment of the subject areas, but rather are introduc-

tions to some of the terminology and concepts that will appear in later chapters of

this report.

1. Multiple Criteria Or imization

1.1 The General Case. The general form of a multiple objective programming

problem, given k objective functions, fk(x), can be stated as follows (2:!):

Max f1 (x) - z,

Max A2(x) -

Max fi(x) - zk

S.t. XES

A trivial solution to the above problem is the vector x which is contained in

the feasible region S and which simultaneously maximizes all k objectives. Except

for this trivial case, each solution vector in the feasible region will satisfy each of

the objectives at varying levels (2:3). Generally speaking, the optimal solution to the

problem will represent the solution which offers the permutation that is most

appealing to the decision maker.

4



A solution technique to address the non-trivial case can begin with an

assessment of the decision maker's utility function (2:3). This utility function

essentially provides an assessment of the value the decision maker assigns to a given

solution vector. The multiple objective problem is thus reduced to the single

objective problem of maximizing the utility function, U (2:3):

Max { U(z,I, 2 ...,z ) }

s.t. fi(x) -zi k

xe$

1.2 Definitions and Terminology. The following definitions are taken from

Chan (9) and Yu (50):

1.2.1 Multicriteria Decision Making (MCDM). MCDM involves four

elements:

(1) Alternative set X, also referred to as the X-space.

(2) Criteria set fq (if there is only one criterion the problem redu-
ces to a traditional math programming problem)

(3) Outcome set Y, also referred to as the Y-space.

(4) Preference structure, with which the decision maker picks the
best outcome.

1.2.2 Versions of MCDM. Multiattribute Dcision Analysis (MADA), is

the descriptive version of MCDM. Multicriteria Optimization (MCO) is the prescrip-

tive version of MCDM.

1.2.3 Attributes. Attributes are measurable objectives or sub-objectives.

1.2.4 Goal. A goal is a specified level of an attribute; some goals are self-

suggested and "more is better" while others are standards to be achieved. We call the

former goal seeking and the latter goal setting.

5



1.2.5 Criteria. Criteria refer collectively to the attribuj u, objectives, and

goals relative to a specific decision maker in specific situations.

1.2.6 Value/Utility Function. A value/utility function approach to

MCDM is to, (a) capture the total value/utility function of the decision maker for

the range of possible outcomes associated with alternatives under consideration, and

(b) select the alternative(s) that maximizes the decison maker's expected

value/utility function.

1.2.7 Satisficing. Satisficing is the process of eliminating alternatives

with unacceptable attrib-ite values; while dominance is the process of eliminating

dominated alternatives. An alternative is said to be dominated when there exists

another alternative in the outcome space that is preferred. Conversely, an alterna-

tive is non-dominated if its preferred set is empty.

1.2.8 Compromise Solution. Compromise solution is an alternative closest

to the "perceived" ideal solution, y*. The solution methodology proposed at Chapter

III of this paper defines the ideal solution from a goal seeking (more is better)

perspective. The ideal thus assumes the best feasible value of each criterion func-

tion as coordinates in the Y-space. The distance to the ideal is computed using a

Manhattan metric.

1.2.9 Pareto Preference. For each criterion function, let greater values be

more preferred (i.e., more is better), and assume that no other information on the

preference is available or established. Then with respect to Pareto preference,

alternative y is preferred to alternative y2 iff component wise y', y 2
1 , i=l ... q,

where "q" is the number of criterion functions.

1.2.10 Ordering. The simplest case of MCDM is simple ordering among

alternatives where no preference structure is required. Examples include dominance

and Pareto preference. An outcome "y" is pareto optimal iff it is a nondominated

6



solution with respect to Pareto preference. A Pareto optimal solution is also called

an efficient, non-inferior, nondominated, or admissible solution.

1.3 Interactive Procedures. Interactive programming methods are useful in

solving problems where the decision maker's utility function cannot be completely

defined or expressed (28:197).

1.3.1 Description. Interactive techniques involve the decision maker in

the solution process. The process is initialized by presenting a limited set of feasible

solutions to the decision maker for consideration. The act of choosing a preferred

alternative from the limited set provides additional insight into the decision maker's

preference structure. Based on this new insight, a new set of solution, is generated

and again presented for evaluation., This iterative process is repeated until a

stopping criteria is met (28:198; 46:1214).

1.3.2 Classifications. Vanderpooten classifies interactive procedures into

two distinct types: search-oriented and learning-oriented procedures (46:1218).

Search-oriented procedures assume that the decision maker's preference

structure "pre-exists and remains stable" (46:1218). However, as stated above, an

interactive approach is required because the preference structure is not defined and

is internal to the decision maker. At each iteration of the process, the decision

maker is asked to supply an assessment of the value that should be placed on the

current p;roposal and also to suggest a way of improving this proposal. The proccs-, is

terminated using a "classical convergence test" (46:1218).

Learning-oriented procedures differ from search-oriented procedures in that

assumptions are not made about the stability or even the prior existence of the

decision maker's preference structure (46:1218). In fact, through an interactive

process similar to the search-oriented procedure, the decision maker plays an

important role in the development and formulation of the preference structure.

However, contrary to the search-oriented procedure, the decision maker "is free to

7



change his mind and to conduct his exploration in a trial and error fashion"

(46:1218). Furthermore, and also unlike the search-oriented procedure, mathematical

convergence cannot be achieved and the stopping rule is invoked when the decision

maker is satisfied with the exploration of the fcasible set (46:1219).

The research problem in this paper appears to satisfy the assumptions of an

interactive search-oriented solution methodology. Interviews with experienced

orbital analysts, who could qualify as decision makers for this problem, have

revealed consistent views )n the value of individual objectives (5; 26). However,

while a stable utility function appears to exist, this function cannot be readily

expressible in mathematical terms.

1.4 Examples of Interactive Applications. There is much written in the

literature about interactive multiple- objective programming. The journals surveyed

offer innovative techniques for initializing the process and for directing the search

for the optimal solution. Three representative methodologies are included here.

1.4.1 Example One. Ringuest and Rinks present two search-oriented

.nteractive procedures for solving multiobjective transportation problems. A

transportation problem is a classical linear programming problem where a product

must be transported from each of m sources to any of n destinations such that one or

more objectives are optimized (36:96).

The first algorithm begins by optimizing each of the objective functions

separately but subject to the multi-objective problem constraints to maintain

feasibility. This produces an initial set of nondominated solutions which span the

solution space (36:100). A nondominatcd solution represents a point in the feasible

space where it is not possible to increase the value of one of the objectives without

decreasing the value of another (39:4). An "optimal linear compromise solution" is

also obtained and provides more complete coverage of the solution space (36:98). As

the name implies, th, . additional solution is a feasible compromise to the ideal

8



solution (where all objectives are maximized) which is infeasible except for the

trivial case.

The decision maker is presented with the above set of solutions and asked to

choose a preferred solution. If the decision maker is satisfied with the chosen

solution the algorithm is terminated. Otherwise, nondominated solution points, adja-

cent to the best current solution, are generated and presented for review. The

process is repeated until the decision maker is satisfied (36:100).

The authors suggest a modified multicriteria simplex method, which was

developed by Yu and Zeleny, to produce the new set adjacent points required at each

iteration:

The Yu and Zeleny algorithm can be used to enumerate all nondominated
solutions for a general multiobjective linear program. Multicriteria simplex
proceeds from an initial nondominated solution by solving a nondominance
subproblem for each adjecent basis.... A modification by Klingman and Mote
... reduces the computat'onal effort involved in implementing ... the method.

(36:98)

The second technique offered by Ringuest and Rinks also begins by optimiz-

ing each objective separately to generate a set of nondominated solutions. The

decision maker is then asked to review the set of nondominated solutions and the

process stops immediately if the decision maker judges one of the solutions to be

satisfactory. Otherwise, a function which passes through each of the current

nondominated solution vectors is identified. This function has the following form

(36:100):

z'I(X) - :Wk zk(x)
k-i

The wk in the above equation represent the weights associated with each

nondominated solution vector Zk. These weights are determined by solving the

following L by (L + 1) homogeneous system of equations (36:100):

9



w zV - w,.1 - 0, k - 1,...,L

where z, is the fth element of zk

The function z'(x) can now be optimized using any efficient, single-objectivc

transportation problem algorithm (36:100). If the optimal solution to this problem is

preferred to at least one of the current set of nondominated solutions, the new

solution is substituted for the least preferred solution and the entire process is

repeated. Otherwise, the decision maker chooses the most preferred solution from

the current set and the process terminates.

The primary difference between the above two techniques is the method used

to generate a new set of nondominated solutions for decision maker appraisal. The

first technique searches "along the edges of the feasible decision variable space"

while the second algorithm, which relies on a weighting scheme of the objective

functions, moves "back and forth across the objective function space" (36:104).

The authors underline the fact that the first algorithm can potentially

produce extremely large sets of nondominated solutions (i.e., all adjacent solution

points) for review by the decision maker. However, the 3econd algorithm produces

exactly (L + 1) alternatives at each 4eration, where L is the number of objectives.

Therefore, "unless a problem has a large number of objectives, the second algorithm

imposes less of a burden on the decision maker" (36:1013).

1.4.2 Example Two. Michalowski presents a learning-oriented technique

for solving multiobjective problems.

The starting point of the Michalowski technique is an estimate of the worst

solution to the problem (28:198). This differs markedly from the Ringuest and Rinks

methodologies presented above which are initialized using solution vectors that
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include the best values that can be attained for each objective function.

Michalowski suggests that using the worst outcome as a reference point is ideally

suited to decision situations where "the search for an admissible decision is driven

by the desire to avoid undesirable consequences" (28:198).

Michalowski offers three ways of obtaining the initial worst outcome. The

simplest technique is to have the decision maker specify the worst outcome levels.

Another method is to determine the worst feasible value of each individual objective

function. Alternatively, Michalowski suggests that estimates of the worst levels be

extracted from a payoff table (28:199).

The general form of a payoff table is shown at Table 1. The entries along a

row represent the value, zi, obtained for objective function zj when objective

function zi is optimized. Therefore, the entries along the main diagonal form the

vector of maximum values for each objectives. The vector formed by taking the

minimum value in each column represents an estimate of the worst feasible solution

(39:267).

Steuer warns that the payoff table is not a reliable method for obtaining the

true minimum values. Computational experience has shown that, in a majority of

cases, one or more of the minimum values obtained in this manner are incorrect

(39:263). Therefore, the impact of this phenomenon on the Michalowski algorithm

should be reviewed before the payoff table method for generating the initial

solution is adopted.

Once the initial worst outcome is defined, the iterative process can begin. At

each stage of the process, the decision maker compares the set of solutions with the

worst case and generates a new decision. The decision is used as a basis to define a

new worst case solution which displaces the previous worst outcome. Thus, the

decisions taken at each iteration provide information about a decision maker's

preferences. This preference information is modelled mathematically to generate
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ZI  Z2  Zk
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z Zkl Zk2
_ - = -(39"267

Table 1 - Payoff Table

another alternative which better meets the decision maker's preferences. The search

process can be terminated either when the dccision maker is satisfied with the

solution or when the generated solutions start to repeat themselves (28:199).

Michalowski claims that one of the main advantages of this technique over

other interactive approaches is that "the complexity of the interaction with a

decision maker is kept at a minimum" 128:202). Another strength of the approach is

that, since the search is learning-oriented, the decision maker is permitted to freely

sample the solution space while learning about his/her preference structure (28:202).

1.4.3 Example Three. Arbel and Oren present a search-oriented algorithm

to solve multiobjcctivc linear programming problems.

The technique uses the simplex method to generate an initial feasible solu-

tion, and to produce the adjacent nondominated solutions for comparison. The

search direction for follow-on iterations is generated using a technique called the

Analytic Hierarchy Process (2:370).

At each step of the process, the relative weights of the adjacent solution

vectors, wi, and the weight of the current solution vector, w,, are obtained through

pairwise comparison pcrformcd by the decision maker. If wo k wi for all i = (,...,k),

then the current solution is the one most preferred by the decision maker and the
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process terminates. Otherwise the following system of equations (in matrix form) is

solved to obtain the gradient vector, del W(yo)T (2:370):

wI - wo  yI T . YOT

W2 - wo  y2 T . YoT

del W(yo)
T

Wk -W o yk' I .Yo

where Yk are the candidate solution vectors
and Wk are the relative weights of these vectors

The original objective functions are weighted using the components of the

gradient vector (2:371). The simplex technique is then used to solve the resulting

single-objective problem and generate a new current solution to begin the process

anew. As indicated above, the stopping criteria is met when the decision maker

considers that the current solution carries more weight than all adjacent solutions.

Arbel and Oren claim that a major advantage of this technique is that the

decision maker does not have to provide answers to "implicit preference questions

concerning his objectives, but instead considers explicit evaluation of adjacent

possible improvement3" (2:373).

1.5 Evaluation of Interactive Techniques. The authors surveyed generally agree

about the usefulness of interactive techniques in solving multiobjective problems.

Steuer claims that "the future of multiple-objective programming is in its

interactive application" (39:361). Vanderpooten supports Steuer's assertion and also

cites Kok as proposing that "it is nowadays accepted that the interactive approach is

the most appropriate way of obtaining the preferences of a decision maker"

(46:1217). Steuer also provides the following insight:
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Interactive procedures permit an effective division of labor. They allow the
computer to do what it does best (process data and execute algorithms), and
they allow the decision maker to do what he or r .'n does best (make improved
judgments in the face of new information). (39:361)

Interactive techniques are facilitated by the use of computers. Gibson et al.

advances that "specifically, the use of computer graphics may greatly facilitate the

process of interactive decision making" (15:104). Also, the ability to examine

multiple scenarios and replay a number of "what-if" scenarios serve to enhance the

solution process (15:104).

Gibson et al. also explain that solution techniques may be piroblem-specific

and point to the need to wisely select the appropriate multiple objective algorithm

(15:104). In a more recent article, Mote and Venkataramanan suggest a set of criteria

that should be used for evaluating interactive solution techniques. First, the

technique chosen should enhance the decision maker's understanding of the problem.

Second, the methodology should ensure nondominated solutions are generated.

Finally, the process should not overburden the decision maker (30:719).

1.6 Summary. Multiple criteria optimization techniques provide a method of

finding the best compromise solution when a series of objective functi as cannot be

optimized simulta;.eously. Interactive methods involve the decision maker in the

solution process and are used to solve multiobjective problems where the decision

maker's preference structure is unknown or inexpressible.

Vanderpooten classifies interactive multiobjective optimization techniques as

search-oriented or learning-oriented (46:1218). Search-oriented methods operate

under the assumption that a preference structure exists and is stable. Learning-

oriented techniques do not require this assumption but allow the decision maker to

express and define a preference structure while searching for the optimal solution.

Whether learning-oriented or search-oriented, the four algorithms studied in

this chapter offer variations of the same theme. First, varying methods of obtaining
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an initial solution to the problem are proposed. Second, different ways of generating

additional solutions for review by the decision maker are discussed. Finally, sligh.ly

different termination criteria are invoked to signal the arrival of the best solution

and to end the process.

There is a general consensus in the literature surveyed that the interactive

approach is an ideal multiobjective problem solving technique. Steuer's comment

that interactive techniques provide an effective division of labor between the com-

puter and the decision maker is an accurate expression of the underlying theme of

interactive multiple objective optimization methodologies (39:361).

2. Location Studies

This section identifies the basic building blocks of location models and

relates mathematical programming formulations the types of problems encountered

in location studies. The organization and content of this section is borrowed from a

paper by Chan and Rowell (11).

2.1 P-Median Problem. The most basic location model is the "simple plant

location problem" also known as the uncapacitated facility location problem. This

problem needs to be solved to establish a number of facilities with enough capacity

to meet all demands. The equations are solved to obtain the lowest cost alternative

considering both facility costs and transportation costs. The constraints ensure that

all locations are serviced by exactly one facility, and that the selected service

facilities are open. The system of equations for this model is as follows:
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Minimize E cj x, + E d, x.
idl i. Jul

subject to:

XJJ - xV Z 0 V ija i*J

Xy k 0,I ViaI

where
xj = I if location i is serviced by facility j

-j f facility j is opened
=ij
= cost of servicing location i from facility j

c = fixed cost of establishing facility j
I = set of locations for both supply and demand

The "p-median" problem (16) seeks to place p facilities, instead of one

facility, among the demands. This type of problem seeks to minimize the average

distance or time between facility and servicing locations. The problem can be stated

as:

Minimize E E f dv x,
is' Jd

subject to:

E xV k 1 V id

Xii - p
id

where
fi = frequency of demand at point i (weight)
dij = distance from point i to facility j
xij = 0-1 integer variable
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In the above system of equations, the variable xij is set equal to 1 when

facility j is selected to provide services to demand point i. The constraints ensure

that all demand points are serviced and that p facilities are selected. Since the

weighted distance (or time), di,, is minimized, the model ensures that each demand

point is serviced by the nearest facility.

The p-median problem can be solved using standard linear programming

techniques. However, more efficient solutions have been proposed in the literature

(6; 3; 40).

If necessary, a constraint can be added to the p-median problem to impose a

limit to the distance that must be traveled to reach a facility. This distance is

known as the maximum, desirable service distance (43). The additional constraint

that must be added to the problem is of the form shown below.

E X1, k l V id

where

Nd- dV S) V ie

An interesting application of the maximal, desirable distance constraint is to

impose a limit on the worst possible performance (in terms of maximum response

time) of the network of facilities. For example, this type of formulation would be

useful in locating fire stations where there might be a maximum allowable response

time.

2.2 The Set-Covering Problem. Along the same lines as the maximal desirable

distance problem, Toregas has proposed a set-covering formulation for facility

location problems (42). The set-covering problem seeks to determine the minimum

number of facilities such that all users are situated no more than the maximal

desirable distance from the service location. Thus, unlike the p-median problem, the
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number of facilities, p, is a variable instead of a constant. The problem is formulat-

ed as follows:

Minirmize E xJ

subject to

x4 - x Zo V jel i

E, X Z I V id

where

Ni - {jldVS) V id

The 0-1 integer variable, xjj, is set to one when facility j is selected. As seen

previously, the Ni variable ensures that, for any given demand location, the formula-

tion only considers facilities that are less than the maximal distance. The constraints

ensure that all locations are serviced and that the selected facilities are opened.

2.3 The Maximal Coverage Problem. The maximal distance p-median and the

set-covering formulations are useful when an unlimited number of facilities can be

constructed to meet a minimum demand. When there exists an upper bound on the

number of facilities that can be constructed, the models must be modified.

Church and Revelle (12) have proposed a methodology, known as the maxi-

mal-covering method, to deal with this type of problem. A second distance, S', is

added to the formulation such that S' > S, the maximal sei vice distance. The

distance S' represents the maximum distance a given facility can be from any

demand location. The constraints ensure that no user is located further than S' away

from all facilities, and allows S to be a variable distance ranging between 0 and S'.

The formulation maximizes the population served while meeting the con-

straint of service distance (dij < S) and the budgetary constraint (by limiting the

number of facilities to p). The service distance, S, can be varied up to the maximum
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S', to analyze the tradeoff between travel distance and degree of coverage for

varying amounts of p. The problem is formulated as follows:

Maximize E f, xu

subject to

EX - P

where

N, - IjIdV&S) V ieI

for i demand locations and j facilities

2.4 Probabilistic Methods. The facility location models discussed so far in this

paper are for deterministic problems. The data for the problem (distances and

demands) are assumed to be constant and known quantities. Whenever any or all of

these quantities are random variables, the problem is no longer deterministic but

becomes probabilistic in nature.

Mirchandani and Odoni (29) propose the following formulation to deal with

p-median problem with k states:

K

Minimize E E E Qk fi dok x~k
kIo. lk Jel

subject to:

E2 a 1 V idI and k-1,...,k

d V i,jeI; isj; and k-1,...,k
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Thus the above formulation seeks to minimize the weighted sum of the travel

distance over all possible states. The probability associated with each state, Qk,

provides the weight. The variable Xijk takes on the value of one when demand point

i is assigned to facility j in state k. Therefore, this type of formulation allows for

facility assignments to vary from state to state based on the value of dijk which

could represent, for example, varying travel times based on time of day.

2.5 Stochastic Facility Location. Odoni advances that there are two types of

uncertainties in facility location problems (34):

(1) random travel times along the arcs of the network

(2) queuing phenomena arising from a combination of finite capacity at
the facilities and random location of demands on the network, or
random arrival time of the demands and random service times.

When the uncertainty is caused by random travel times, the problem can be

solved using the deterministic p-median formulation as described above. However,

when uncertainties are due to the queuing phenomena, "research efforts have been

focused upon single-facility problems due to the severe analytical difficulties

associated with multi-facility problems" (12).

The problem in this research paper could potentially involve uncertainties of

the second type. The satellites will have pseudo-random arrival times and require

random service times. Queuing, in the strict sense of the word, will not apply to

orbiting satellites. However, the demand for observations generated by operational

tasking requirements will need to be met in a timely manner.

2.6 Location on a Plane and Network. There are three ways to measure

distances in facility location problems: the Euclidean metric, the Manhattan metric,

and the continuous median method.

The Euclidean metric method utilizes the straight-line distance between

points. For example, this type of measurement would apply to air travel where users

can travel directly from the demand point to the facility. The Manhattan metric
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technique restricts travel along grid lines parallel to the coordinate axis. An obvious

application is when travel between two points must follow the rectangular pattern of

streets in a city (12).

In a network, the continuous median "is a point such that the sum of the

distances between all arcs and the point is minimum" (12). The distance between an

arc and a point is the length of the longest line that can be drawn from the point to

the arc. Similarly, the continuous p-median is a set of p points such that the sum of

the distances from all arcs to the closest point to each arc is a minimum.

2.7 Summary. The basic single facility location model is readily extended to

the p-median problem where p facilities are optimally located to satisfy demands.

This type of problem minimizes the average distance or time between a facility and

the locations it services. A constraint can be added to the p-median problem to limit

the distance from a demand point to a facility. This distance is known as the

maximum desirable service distance.

The set-covering formulation is similar to the maximal desirable distance

problem formulation. Both methodologies locate the minimum number of facilities

required to serve the demand points such that all users are situated no further away

than the maximal distance. The maximal coverage technique has been developed to

deal with problems where there is a limited number of available facilities.

Probabilistic methods provide ways of dealing with problem parameters that

are random variables. Mirchandani and Odoni (29) have proposed a formulation to

deal with p-median problems with multiple states.

Odoni (34) has identified two types of uncertainties in facility location

problems. Problem with uncertainties due to random travel times along the arcs can

be solved using deterministic p-median formulations. Other types of uncertainties

may create severe analytical difficulties.
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Three ways to measure distances in facility location problems have been

identified: the Euclidean metric, the Manhattan metric, and the continuous median

methods.

3. Network-Flow Programming

Most of us can readily grasp the concept of a network model when we see the

simple diagram of a number of arcs connecting together a number of nodes (or

vertices). Physical significance can immediately be attached to the elements of a

network model as one sees the parallel with a communication network or visualizes

the flow of fluids through pipes (the arcs) and pumping stations (the nodes).

Network modeling techniques can be applied to several types of problems,

and are applied in this research to two facility location problems (Chapter IV).

Representing these problems as networks helped provide an understanding of the

dynamics of the problem. Phillips and Garcia-Diaz list the following advantages of

using network models (35):

1. Network models accurately represent many real-world systems.

2. Network models seem to be more readily accepted by nonanalysts than
perhaps any other type of models used in operations research. This phe-
nomenon appears to stem from the notion that "a picture is worth a thou-
sand words"...

3. Network algorithms facilitate extremely efficient solutions to some large-
scale models.

4. Network algorithms can often solve problems with significantly more
variables than can be solved by other optimization techniques. Thi
phenomenon is due to the fact that a network approach often allows the
exploitation of particular structures in a model.

3.1 Definitions and Terminology. The following definitions are taken from

Chan (10) and Phillips and Garcia (35).
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3.1.1 Graph. A graph, G(V,E), is a set of nodes V=(l,2,...,m) connected

by edges E-(epe,...,e).

3.1.2 Network. A network is a graph with flow of some kind.

3.1.3 Unimodular. A square, integer matrix is called unimodular if its

determinant, det(B) - +/- 1. An integer matrix A is called totally unimodular (TU)

if eveiy sqnare, non-singular submatrix of A is unimodular.

3.1.4 Source/Sink. A source in a network is a node where units of

flow enter tht network. Conversely, a sink in a network is a node where units of

flow leave the network. Networks can be designed with multiple sources and sinks.

3.1.5 Pure/Generalized Networks. In a pure network, there are no

losses or gains of units of flow through the network. For every unit of flow entering

the network, there is one unit of flow leaving the network. In a generalized net-

work, losses or gains can be modelled to occur at nodes and/or arcs. The flow in

and/or out of the network at a given node can be fixed or variable.

3.2 Theorems.

3.2.1 If matrix A is TU, then all the vertices of the polyhedron

P(b) - {x E Rn, : Ax b }, are integer for any integer vector b, b 6 Zm. (i.e.,

an integer solution can be obtained to a linear program without the need to impose

integer restriction to the variables when the constraint matrix A is TU).

3.2.2 An integer matrix A with all elements aij=O, +/- 1, is TU if no

more than two nonzero entries appear in any column, and if the rows of A can be

partitioned into two sets, Q, and Q2 such that:

(1) If a column has two entries of the same sign, their rows are

in different sets Q, and Q2, and

(2) If a column has two entries of different signs, their rows

are in the same set Q, and Q2.
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4. Climatologi

4.1 The Canadian Climates. The Canadian Encyclopedia (41:354) lists 5 main

climatic regions for the southern populated areas of Canada: East Coast, Great

Lakes, Prairies, Cordilleran (Rocky Mountain) and West Coast. Further, the authors

claim that while many different climatic regions exist in the far North, the mostly

uninhabited area of northern Canada can be subdivided into Arctic and Subarctic

climatic regions.

The subdivisions found in the Canadian Encyclopedia closely parallel those

presented by Trewartha et al. (45) who identify a "Polar rundra" region for the

Arctic, a "Boreal" region for the Subarctic, a "Temperate Oceanic" region for the West

Coast, and a "Highland" region for the Cordilleran. Trewartha et al. group most of

the Prairies, and the Great Lakes and East Coast regions under the heading of

"Temperate Continental" and identifies a portion of southern Saskatchewan and

Alberta as belonging to the "Dry Steppe" climate group.

"Defining climatic regions for any country is difficult... Within a geographic-

al area, climates graidually change from one type to another" (41:353). For the

purposes of this research, the climate regions identified in the Canadian Encyclope-

dia will be adopted. The following climate types "result from the relationship

between monthly potential evapotranspiration, PE, (or need for water) and precip-

itation" (41,354):

East Coast. These climates are represented by Halifax, NS. Precipitation is
fairly uniform throughout the year and only in July does water need exceed
supply
Great Lakes. These Southern Ontario climates are typified by Windsor.
Precipitation is rather uniform throughout the year ...
Prairie. These climates are exemplified by Edmonton. The annual precipita-
tion is inadequate to meet the PE and deficits are common during the summer
months. With low winter precipitation, soil moisture is not always restored...
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Cordilleran. This region is a composite of many climatic types. The southern
BC valleys have climates that are the driest in Canada.
West Coast. These climates are characterized by a winter maximum and
summer minimum precipitation regime. Victoria is a typical station.
Subarctic and Arctic. At Inuvik, the monthly PE and precipitation resemble
those of stations in the Prairies. Alert, in the High Arctic, has a more severe
arctic climate, with low precipitation.

4.2 Determining Cloud-Free-Line-Of-Sight (CFLOS). To obtain useful data,

the GEODSS must acquire and maintain a CFLOS on a satellite for a period of five

minutes (19). The model developed in this research requires the probability of

having a CFLOS from a given location when observing a given satellite. Methodolo-

gies to determine CFLOS probabilities were first proposed by Lund (24) and

McCabe(27) and much has been written on the subject since that time (47).

The CFLOS probabilities required for this research were provided by the

USAF Environmental Technical Applications Center (ETAC/DNY) located at Scott

AFB. The analytical model used by ETAC/DNY to determine the CFLOS probabili-

ties is based on the work of Malick et al. (25) which represents the current standard

in the field (25).

There are two distinguishing feature to the Malick et al model (25:142). First,

the probability calculations are performed analytically whereas previous efforts had

been largely empirical. Second, the concept of CFLOS was generalized to determin-

ing the probability of a cloud-free interval which includes the probability of CFLOS

as a special case. "This methodology can be used to calculate the probability of a

cloud-free interval of various lengths (of time) within a straight line path of any

length" (25:142).

The ETAC/DNY model requires sky cover climatology derived from ground

observations as input to produce the CFLOS probabilities for a given location and

satellite (47). Therefore, the availability of historical weather data becomes a factor

in selecting candidate sites to locate a GEODSS station. This is not considered a
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serious limitation of the methodology proposed in this research since, from a

practical point of view, it would not be advisable to select a location without first

reviewing historical weather patterns associated with the proposed site.

5. Transmissivity of the Atmosphere

To acquire and track satellites, the GEODSS telescopes must gather sunlight

which is reflected by the satellites they observe. What is commonly referred to as

"light" is more technically labeled as electromagnetic radiation (EMR) with wave-

length of 4-7 pm. If an electro-optical device such as GEODSS is to perform its

function adequately, then its detector must be able to gather sufficient amounts of

EMR to recognize the presence of a target in its field of view.

The interaction of the atmosphere with the reflected EMR traveling from the

satellite to the GEODSS telescope causes a fraction of the energy to be either

absorbed or scattered. The end result is that only a portion of the available reflected

EMR actually reaches the GEODSS telescope. It is important to understand these

interaction mechanisms as they will obviously affect the decision of where to locate

a GEODSS observing station.

The Manual of Remote Sensing published by the American Society of

Photogrammetry (1) provides, among other topics, an excellent description of the

nature of electromagnetic radiation and of the interaction mechanisms within the

atmosphere. This information is sketched out here for the convenience of the reader.

5.1 Scattering and Absorption. As already mentioned, the transmissivity of

the atmosphere is defined by the amount of scattering and absorption of the EMR.

Transmissivity of the atmosphere varies with the wavelength of the EMR (1:18 1),

The atmosphere consists of particles of various sizes ranging from particles of

atomic and molecular size to larger particles (or particulates) with radius of up to
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100 pm (1:187). All of these particles can scatter the EMR. However, scattering from

atomic size particles is negligible and molecular scattering is important only in the

near ultraviolet and visible part of the EMR (1:181). Unfortunately, this happens to

be the area of interest for GEODSS and other electro-optical devices.

The amount of molecular scattering and absorption that takes place is 1),

only a function of wavelength but a function of the density of the atmosphere. In

other words, the chances of interaction between EMR and a particle in the atmo-

sphere increases when there are more particles present. The density the atmospheric

gases (i.e., the number of molecular size particles) decreases at an exponential rate

with respect to altitude above sea level (1:181). Therefore, to maximize the amount

of reflected EMR received from a satellite (or minimize the losses through the

atmosphere) it makes sense to want to locate an observi:,g station at higher eleva-

tions.

The larger size particles, or particulates, are both natural and man-made in

origin. Only particulates between 0.06 and 10 pm in diameter have an effect on the

transmission of EMR in the visible wavelengths (1:187). About 60% of these particles

are concentrated near the surface of the earth, within 1 km of the ground. Sources

of natural particulates smaller than 20 pm in radius include soi! debris, forest fires,

and volcanic eruptions. Man-made sources are primarily as a result of gaseous emis-

sions (1:186).

5.2 Ambient Light. Experience tells us that it is much easier for the naked eye

to detect a distant light source at night than in the daytime. The same holds true for

the GEODSS detector. In fact, the GEODSS will only operate when the sun is at

least 6 degrees below the local horizontal plane (19). This is due to the fact that the

presence of a target can only be detected if the source of EMR is distinguishable

from the background EMR. Thus, an observing site should not be located near
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sources of EMR such as cities, which will impair the ability of the detector to detect

the target.

6. Orbital Mechanics

6.1 Classical Orbital Elements. The size, shape, and orientation of an orbit

can be completely described by five independent quantities called "orbital elements".

Given a sixth element, the position of a satellite in the prescribed orbit can be

determined at any moment in time. These six elements are known as (1) the semi-

major axis, (2) the eccentricity, (3) the inclination, (4) the longitude of the ascending

node (or the right ascension of the ascending node), (5) the argument of periapsis,

and (6) the time of peripasis passage. Together, these six parameters form the classi-

cal set of orbital elements and are defined as follows (4:58):

(1) The semi-major axis is a constant which defines the size of the conic

orbit.

(2) The eccentricity is a constant which defines the shape of the conic orbit.

(3) The inclination, in the case of earth-orbiting satellites, is the angle made

between the earth's rotational axis and a vector perpendicular to the orbital plane

known as the angular momentum vector (a more technically precise definition can be

found in Bate et al. (4:58)).

(4) The longitude of the ascending node, in the case of earth-orbiting

satellites, is an angle measured in the equatorial plane, from the first point of Aries

to the point where the satellite in its orbit crosses the equatorial plane in a northerly

direction (ascending node). The angle is measured counterclockwise when viewed

from the north side of the equatorial plane.

(5) The argument of periapsis, which in the case of earth-orbiting satellites is

called the argument of perigee, is an angle measured in the orbital plane from the
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ascending node to the perigee point (the point where the satellite is closest to the

earth) in the direction of satellite travel.

(6) The time of periapsis passage, which in the case of earth orbiting

satellites is called the time of perigee passage, is the time when the satellite was at

perigee.

While not one of the six classical orbital elements, another important orbital

parameter is the period which equates to the time taken by the satellite to complete

one full revolution in its orbit.

6.2 Common Orbit Types.

6.2.1 Geostationary. A geostationary orbit is a circular orbit with an

inclination of zero (or near zero) degrees, and with a period of one sidereal day.

Satellites in geostationary orbits that are traveling in the same direction as the

earth's rotation appear stationary with respect to the earth.

6.2.2 Earth Synchronous. A satellite which completes an integral

number of orbits per day is said to be earth synchronous (37:46). An example is the

Molniya (also spelled Molnya and Molnia) which is called a semi-synchronous orbit

because it has a one-half sidereal day period. The Molniya is an orbit used by the

Soviet Union for telecommunications purposes (37:44).

6.2.3 Sun Synchronous. The distinguishing feature of a sun synchro-

nous orbit is that the orientation of the orbital plane remains fixed with respect to

the sun. For example, the orbital plane may be kept facing the sun which provides

continuous illumination of the solar panels for the life of the satellite. Fixed

orientation with respect to the sun is achieved by allowing the orbital plane to

precess at a rate of 0.9856 degrees-east per day (37:45). The precession of the orbital

plane is caused by the oblateness of the earth, and the rate of precession is a func-

tion of the semi-major axis, inclination, and eccentricity parameters of the orbit

(37:23).
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6.3 Orbit Determination from Optical Sightings. Bate et al. provide an excel-

lent expos6 of a solution methodology to the problem of solving for the classical

orbital elements given optical sightings alone (4:117).

Bate et al. explain chat the problem of solving for the classical elements is

much simpler when radar information, including range and range-rate, is available.

However, they point out that the angular pointing accuracy of radars is much less

than that available from optical instruments and that much more precise determina-

tions of orbital parameters is therefore possible from optical sightings (4:117).

Bate et al. also explain that since six independent quantities are required to

fully describe an orbit and to position a satellite in that orbit, that a minimum of

three optical sightings taken at three different times are required to solve the

problem. This is due to the fact that each optical sighting provides two independent

quantities (such as azimuth and elevation) and thus three observations provides for

six equations with six unknowns. The equations used to solve the problem are fully

derived by Bate et al., together with a differential correction technique to make use

of redundancy of observation to improve the solution (4:122).

6.4 Determining the Limits of Visibility. Only a segment of the geostationary

belt is visible from a given geographic location. One way to identify these limits of

visibility is in terms of the longitudes of the satellite subpoints.

Roddy provides a very straightforward technique to determining the limits of

visibility of the geostationary belt from a given location on earth (37:52). His

development adopts the following notation and conventions:

O E longitude of the earth station, where longitudes east of the Greenwich
meridian are taken as positive numbers (the greek syr-'"ol "phi" used
by Roddy for longitude commonly represents latitude in other litera-
ture)

Os longitude of the satellite subpoint
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.. a latitude of the earth station, where north latitudes are taken as posi-
tive numbers

is M latitude of the satellite subpoint

RE * earth equatorial radius (6378.14 km)

R a earth radius as a function of latitude

h m geostation-ry height (35,786 km)

S z angle subtended at the satellite in a triangle formed by joining the
center of the earth, the geographic location, and the satellite position

c a spherical angle measured from the geographic location to the satellite
subpoint in a spherical triangle formed by joining the north pole, the
geographic location and the satellite subpoint

B w interior angle of a spherical triangle representing the difference in
longitude between the observer location and the satellite subpoint.
The spherical triangle is formed by joining a pole with the earth
station location and the satellite sub-point.

The algorithm to solve for the limits of visibility is as follows (37:52):

R - R ( i s in 21

R= 6R (1 - SilX
298.257

sin S R sin El
RE + h

c - 180 - (El + S)

cos B- Cos C
cos IE

Limits = + B

Roddy also provides a very straightforward solution algorithm to determine

the "look angles" to a geostatioaiary satellite from a given earth location. A look

angle is the angular orientation assigned to a satellite tracking instrument in order to

locate a satellite as it orbits the earth. The equations in this algorithm are based on

the same parameters used in the above limits of visibility calculation (37:48).
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III. METHODOLOGY

This chapter describes the solution methodology that is developed in this

research paper. The solution methodology is graphically portrayed at Figure 1. The

main headings of this chapter parallel the list of sub-objectives that were presented

in Chapter I.

1. The Set of Candidate Locations

The candidate locations must be chosen from a list of locations within

Canada for which airfield weather summary information is available. This is

necessary because the probability of favorable weather for a given location will be

determined using airfield weather data.

The number of candidate locations must be kept to a minimum. As discussed

below, the problem of finding the optimal location is combinatorial, with an

explosive number of feasible alternatives given by,

nt

(n-p)IpI

where p - number of facilities

n - number of locations

The set of candidate locations must be dispersed as evenly as possible

throughout Canada to take into account the impact of geographic location on the

number of observations that can be collected on a satellite in a given orbital plane.

A cross-reference to climatological maps ensures that the candidate location set also

provides representatives from each of the Canadian climatic regions identified in

Chapter II.
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As discussed below in Section 4, the criteria set in this research is limited to

two. These two criteria distinguish themselves from all other criteria identified

through discussions with the decision maker in that they have a "more is better"

quality. All other criteria can be treated as pass/fail, or essential criteria. These

include site accessibility, availability of personnel support resources (such as hous-

ing), ambient lighting, and others. All locations chosen as candidates must, of

course, meet the essential criteria.

2. The Probability a Time Block is Observable

The GEODSS system operating specifications in terms of environmental

factors were provided by NDHQ (18). In particular, cloud-free-line-of-sight,

temperature, and wind speed criteria that restrict the operation of the GEODSS

system were identified and are addressed in this research. In addition to suitable

environmental conditions, the satellite must remain in view for 5 minutes, be at least

15 degrees above the horizontal plane, and be illuminated by the sun during condi-

tions of civil twilight (i.e., when the sun is at least 6 degrees below the horizon).

Given all of the above, the probability a time block of five minutes is usable

for observing is given by the following equation (31):

P(ABCDEF) = P(A) P(BIA) P(CIAB) P(DIABC) P(EIABCD) P(FIABCDE)

where

A = sun < 6 degrees below horizon
B = wind speed < 25 knots
C = temperature > -50 C
D = satellite > 15 degrees above horizon
E = CFLOS for 5 minutes
F = satellite illuminated by the sun
AB = intersection of events A and B
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The following assumptions of independence of events are made:

(1) Event D is independent of ABC which implies that P(DIABC)=P(D)

(2) Event F is independent of BCE which implies that
P(FIABCDE)=P(FIAD) (32)

The above probabilities are obtained for each candidate location, and for

every month of the year, to take into account seasonal variations of the climatologi-

cal parameters. The probabilities, P(A), P(BIA), P(CIAB), P(D), and P(EIABCD) are

provided by ETAC/DNY, Scott AFB (48).

The probability, P(FIAD), is derived using data from AFIT/ENS software

developed by Dr T.S. Kelso which, among other options, determines when events

FAD and AD occur during a given time period, geographic location, and for a given

satellite (22). The total number of minutes in a month when events FAD and AD

occurred is divided by the total number of minutes in a month to obtain P(FAD) and

P(AD) respectively. These probabilities are then used to calculate P(FIAD) =

P(FAD)/P(AD).

Alternatively, occurrence of events FAD and AD could be obtained from a

software package by the name of SATRAK which is available from

AFSPACECOM/DOJ (17).

3. The Expected Number of Observable Time Blocks

The expected number of usable observation opportunities for each candidate

location for every month of the year will be calculated using the equation

where Eijk = Pijk Bj

Eijk = expected number of observation opportunities in month 'j' at location
'i' of satellite 'k'

Pijk = the probability block is observable
B = the total number of 5 minute observation blocks month j
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In this research, the expected number of observation opportunities, Eijk, is the

fundamental building block of the optimization process. The effectiveness of an

alternative is judged in terms of the total number of observation opportunities and

also in terms of the variance in the number of observations. Both of these quantities

are calculated from EiJk.

4. Multiple-Criteria Facility Location Model

The sponsor for this research asks that the optimal one-site, two-site, and

three-site configurations be determined (18). While this question is directly translat-

ed into a maximal coverage facility location problem, a set covering facility location

formulation offers a slightly different and interesting way to approach the solution.

Thus, single objective maximal coverage and set covering models arc developed and

presented in this research. The final multiple-criteria facility location model

includes elements of both types of models.

4.1 Criteria Functions. The two criteria functions are given by:

I J X

af - E Ek
J

Minf 2 - VJ
J

The first criterion function seeks to maximize the total expected number of

observation opportunities. The second criterion function seeks to minimize the sum

of the variances, V,, in the number of observations collected on a given satellite in a

given month, by an alternative. Thus, the variance function seeks to ensure that

each satellite is equally well observed in a given month.

4.2 Model Constraint. The problem is formulated with only one constraint. A

minimum number of observations must be collected in any given month on a given
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satellite to ensure that the constantly changing orbital parameters are adequately

maintained. This constraint is stated mathematically as follows:

IE Xukz:Di V JA

The vector, Dk, represents the monthly "quotas" of observations required on

.ach satellite "k" to maintain the necessary update frequency of the orbital parame-

ters. The requirement Dk is provided by Headquarters 1st Space Wing (26).

4.3 Solution Algorithm. The set of candidate locations is restricted to 12.

This number is considered sufficient to provide representatives of all major Canadi-

an climatic regions while at the same time providing full geographic coverage for

reasons stated above. The satellite target population is limited to 6. This latter

restriction is not a function of the software and the number of satellites could be

increased if the probability data described above is available.

Using the formula presented in Section I above, and given a set of 12

locations, there are 12 one-site, 66 two-site, and 220 three-site alternatives, for a total

of 298 alternatives. First, Eiik is computed from probability tables as discussed

above. Feasible alternatives can then be identified by testing each alternative

against the constraint equation. Next, the values of both criterion function are

computed for all feasible alternatives providing a complete description of the

outcome space for each of the three subproblems: the one-site, two-site, and three-site

problems.

Since the problems are integer programming, the complete set of N-points

cannot be generated using linear programming techniques such as MC-simplex

(31:219). Instead, the complete set of N-points, as defined with respect to Pareto

preference (50:10), is extracted from the set of feasible outcomes by vcrifying

dominance of each point against all others.

37



The solution procedure concludes by ordering the alternatives based on

deviation from the ideal for each of the three subproblems. The ideal is defined as a

point (y,*,y 2*) in the outcome space with y1*-(max y1l), and Y2 '-(max y2i), given "i"

feasible alternatives. Ordering of alternatives is obtained by sorting the N-points in

ascending order of Manhattan distance to the ideal.

From the ordered list, the optimal alternatives for the maximal coverage p=l,

p-2, and p-3 subproblems are simply the leading candidates of each list. The

optimal alternative for the setcovering problem would be the top alternative of the

p-Il list. If there are no feasible alternatives for the p=l problem, then the set

covering solution is the top alternative for the list which includes feasible alter-

natives and has the lowest p value.

4.4 Software Package. The solution algorithm described above is programmed

in FORTRAN 77. The source file for this software is provided at Appendix U and

is documented in Chapter V.

The input to the program consists of seven data files containing the probabili-

ties associated with the events described earlier in this chapter:

PROBA.DAT 12x12 matrix of probability of event A at location I, in month J

PROBB.DAT 12x1 2 matrix of probability of event B given A, at location I, in
month J

PROBC.DAT 12X12 matrix of probability of event C given AB, at location I, in
month J

PROBD.DAT 12x6 matrix of probability of event D, at location I, for satellite K

PROBE.DAT six 12x12 matrices of probability of event E given ABCD, at loca-
tion I, in month J, for each satellite

PROBF.DAT six 12x12 matrices of probability of event F given AD, at location I,
in month J, for each satellite

OBSREQ.DAT Ix6 vector of monthly requirement of observations for each satel-
lite
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The output also consists of eight files as follows:

RESULTS.OUT three tables of top 12 alternatives ordered by deviation from the
ideal, and a table of Ejj for each of the six satellites.

ALTLST.OUT table showing alternative numbering legend used by the software

ALTOBS.OUT six 298x12 tables showing number of observations collected by
alternative X, in month J, on each satellite

OBJFCN.OUT table showing valu- of F1 and F2 for each alternative

UTILS.OUT table showing utility of F, and F2 for each alternative

FEASIB.OUT table showing the feasibility status (true or false) of each alter-
native

EFFSET.OUT table indicating whether or not an alternative is part of the non-
dominated set

DEVIAT.OUT table showing the Manhattan metric deviation from the ideal for
each alternative
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IV. SINGLE OBJECTIVE MODELS

1. Maximal Coverage Formulations

As was seen in Chapter II, the classical "p-median" facility location problem

seeks to place p facilities among the demands. This type of problem seeks to

minimize the average distance or time between facility and servicing locations. The

problem is re-stated here for the convenience of the reader:

minimize E E f, du x,
MiJd

subject to:

E xi k 1 Viil
idL

XJ - XY > 0 V i,jel i*j

id '

where
fi = frequency of demand at point i (weight)
di= distance from point i to facility j
xij= 0-1 integer variable

In the above system of equations, the variable xij is set equal to 1 when

facility j is selected to provide services to demand point i. The constraints ensure

that all demand points are 3erviced and that p facilities are selected. Since the

weighted distance (or time), dij, is minimized, the modcl ensures that each demand

point is serviced by the nearest facility.

1.1 Mathematical Formulation. The classical p-median model is readily

adapted to the GEODSS location problem. The objective function is modified to

maximize the number of observation opportunities, Wij k:
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where X is 0-1 integer

The observation opportunities for location i. in month j, of a type k satellite

are obtained by multiplying the probability of favorable weather times the total

number of observation for that month. An observation opportunity occurs when a

satellite is in the field-of-view of the telescope for a period of five minutes, is above

15 degrees in elevation, and is illuminated by the sun. The total number of such

opportunities for a given month can be determined from celestial mechanics. For the

purposes of this project, artificial data will be used.

The following three constraints ensure that, (1) the selected facility is open,

(2) that 'p' facilities are selected, and (3) that a minimum monthly observation quota

is met for each type of satellite:

x, 0P j
I

I

EWx X dk Vjk

The number of locations, i, under consideration, the number of states

(months), j, and the number of satellite types, k, will be limited to three for the

purposes of this project. However, approximately 10 locations and 10 satellite orbit

classes need to be included in the actual problem, resulting in at least 1200, 0-1

integer variables (obtained by multiplying ixjxk). A search for alternate solution

methods is proposed.

1.2 Network-Flow Formulation. Various approaches were attempted to convert

the above mathematical program into a network flow formulation. Efforts to obtain
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a pure network flow model did not prove successful. These efforts were motivated

by a desire to take advantage of the totally unimodular properties of this type of

formulation to increase computational efficiency. However, it eventually became

clear that a generalized network, or network with gains, was required.

The network diagram is shown at Figure 2. As stated previously, the formu-

lation is limited to i-3 candidate facilities, to j=3 states, and k=3 demand points.

Nodes 1, 4, and 7 represent facility I in states 1, 2, and 3 respectively. Similarly,

nodes 2, 5, and 8 represent facility 2, and nodes 3, 6, and 9 represent facility 3. Also,

nodes 10, 13, and 16 correspond to demand point 1, nodes 11, 14, and 17, correspond

to demand point 2, and nodes 12, 15, ane .8, to demand point 3.

i\k 10 11 12 TOTAL

1 8 5 4 17

2 3 6 9 18

3 2 7 5 14

TOTAL 13 18 18n4I

Table 2 - Wik for State I

i\k 13 14 15 TOTAL

4 6 2 7 15

5 9 3 6 18

6 4 6 5 15
[TOTAL] 19 11 J 18 ][ 48

Table 3 - Wik for State 2

The fixed external flow at the source is set equal to the number of facilities

'p' to be selected. Arcs with capacity of 1, zero weight, and gain of k+l, connect the
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NOTES: (1) Arcs connecting nodes 13 to 18 to
node T (sink) are not shown

(2) (u,w,a) =(upper bound, weight, and gain)

Figurc 2 - Network Flow Diagram (Maximal Coverage)
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i\k 16 17 18 TOTAL

7 4 8 9 21

8 6 7 9 22

9 3 9 7 19

TOTAL 13 24 25 62

Table 4 - Wik for State 3

source with the facilities in state 1 only. Within each state, arcs link a given facility

with all three demand points. The capacity of these arcs is 1 and the weights, Wik,

are as shown in Tables 2, 3, and 4. "Interstate" arcs, with capacity 1, weight 0, and

gain k+l (except for the arcs between states j-1 and j which have a gain of 'k')

connect the nodes representing a given facility. Arcs connecting demand point nodes

to the sink are assigned a capacity of 'p' and weight 0. The fixed external flow at

the sink is set equal to (-jkp).

The total number of nodes in the network for a problem with 'i' locations, 'j'

states, and 'k' demand points, is simply the 2 (source and sink) plus the number of

nodes in each state multiplied by the number of states: (2 + j(i+k)). The total number

of arcs is the sum of, (1) the number of arcs out o" the source, (2) the number of arcs

into the sink, (3) the number of arcs connecting th; facilities and demand points

multiplied by the number of states, and (4) the number of "interstate" arcs. This

reduces to j(i+k+ik).

Thus, for the limited version of the problem, with i=j=k=3, there are 20 nodes

and 45 arcs. The network representing the actual problem, which as stated previous-

ly should include i=0 locations, j=12 months, and k=10 satellite orbit classes, will

therefore consist of 242 nodes and 1,440 arcs.

1.3 Solution Procedure Using MIP83. The above network-flow formulation

leaves out the minimum monthly observation constraint of the original mathematical

44



formulation. This constraint, which should be added as a side constraint, is ignored

for the maximal coverage formulation so that the MIP and Branch and Bound

solution procedures adopted for this research can be compared.

The purpose of the minimum monthly observation constraint is to ensure that

a minimum number of observations is obtained each month for each satellite type.

Leaving out this constraint means that the optimal location(s) will be the one(s)

which provide(s) the greatest total throughput potential. It is conceivable that for

any given state (month), the optimal choice selected on the basis of this rule may not

provide the minimum requisite number of observations.

The formulation will only produce the desired output for integer flow.

Unfortunately, because of the presence of gains, the node-arc incidence tableau is

not totally unimodular and an integer solution is not guaranteed. This was verified

using MICROSOLVE/OR and MICROSOLVE/Network Flow Programming which

both produced non-integer flow solutions (20; 21). Introduction of the gain parame-

ter also increases solution time and memory requirements of the Microsolve programs

(20:40).

To force an integer solution on the system of equations, the MIP/83 software

package was used to solve the problem (23). This package is very "user friendly" only

requiring an ASCII text file with .LP extension as input. The output can be directed

to an ASCII text file. The program is accessed from the directory containing the

MIP83.EXE file, by typing the following command line:

MIP83 filename.LP OUTPUT filename

The command line can include several other job control parameters other

than the OUTPUT command. Command line parameters are outlined in Section 5-1

of the user's manual.
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The input file is included at the beginning of the output file. The structure

of the input file is simple. As shown at Appendix A for example, each file must

begin with the ..TITLE statement and be followed by a title. The ..OBJECTIVE

section follows the ..TITLE section, indicating whether this is a max/min problem

and spelling out the objective function. This may be followed by a ..BOUNDS

section if required to set lower and upper bounds on the variables. The ..CON-

STRAINT section completes the package. It is important to note that all variables

must be identified in the objective function even if they are zero cost. Also as a

means of identification, in the objective function integer variables are single-square

bracketed, and 0-1 integer variables are double-square bracketed.

An excellent feature of MIP83 is the provision of comment lines in the input

file. These are identified by using an asterisk as the leading character. This allows

the user to include documentation with the input file. Also, MIP83 allows the

constraint to be labeled if desired by preceding the constraint equatior with the

label name and a colon. The output file at Appendix A shows the use of both

comment lines and constraint labels in the input section.

MIP83 provides excellent error handling. Coded diagnostic messages are

generated. A complete list of error messages and their reference number is provided

at section 9 of the user's manual.

The output based on the above data for p=l and p=2 is shown at Appendix A

and B. As shown in these annex, MIP83 includes a tabular representation of the

problem variables with their respective value at optimality together with the

objective function coefficient associated with each variable. Also included in

tabular form is the value of the left-hand and right-hand sides of each constraint of

the problem.

By inspection of Tables 2 through 4, the optimal solution of selecting site 2

for p=l (objective=58) and selecting sites 1 and 2 for p=2 (objectivc=l 11) is correctly
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identified by MIP83. The optimal integer solution and the optimal solution to the

relaxed problem are shown at the head of the tables.

1.4 Solution Procedure Using LP83. As indicated above, the node-arc inci-

dence matrix of the network is not totally unimodular and an integer solution is not

guaranteed. An attempt was made to force an integer solution on the problem by

adding a series of side constraints that impose conditions on the flow through the

network.

Appendix C shows the LP83 (23) output of the resulting formulation. From a

user interface perspective, LP83 is identical to MIP83. The only significant differ-

ence is that the variables in the objective function are not single or double-bracketed

to impose integer restrictions.

As can be seen at Appendix C and D, three types of constraints were added to

the MIP problem. First, the "source-connector flow" constraints ensure that the

upper bound on the flow through each of the "source-connector" arcs is limited to 1.

Second, "the sink-connector flow" constraints ensure that the flow through each of

the "sink-connector" arcs is set equal to "p". Third, the "equi-distribution of flow"

constraints ensure that the amount of flow through all arcs entering or leaving a

facility node is equal. This last category of constraints requires four pairwise con-

straints at each facility node as shown.

Appendix C and D show that the solutions obtained from the LP83 formula-

tion is integer and agrees with the MIP83 solutions. At issue, is whether or not this

LP formulation would always provide an integer optimal solution given an integer

right-hand-side and varying objective function coefficients. In other words,

whether or not the constraint matrix is totally unimodular needs to be ascertained.

The proof that the constraint matrix is totally unimodular is beyond the scope

of this research. The first step of this exercise would require Gaussian elimination

to reduce the matrix to a (0,-1,1) matrix. If this can be accomplished, then algo-
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rithms are available to show whether or not the resulting matrix is totally unimodu-

lar (33:555). If the (0,-1,1) matrix is totally unimodular then the original constraint

matrix is also totally unimodular (33:540).

1.5 Solution Procedure Using Branch and Bound and Microsolve Network Flow

Programming. The integer solution to the problem can also be found by use of a

Branch and Bound algorithm. The algorithm used to solve the maximal coverage

problem is as follows (8):

Step 0. Initialization. Set Zo to infinity (+).

Step 1. Branch. Select an unfathomed node and partition it into two subsets.
(The subsets represent the two feasible values, 0 and 1, for flow through an
arc leading out of the sink.)

Step 2. Bound. For each new subset, find a lower bound ZLi for the objective
function value of feasible solutions in the subset, by solving a relaxed
subproblem for the objective.

Step 3. Fathom. For each new subset i, exclude from further explicit enumera-

tion (fathom) if:

(a) ZLi 2: ZU ;

(b) Subset i cannot have any feasible solution; or

(c) Subset i has a feasible solution. If ZLi < ZU, set ZU = ZL1 and store as the
incumbent solution. Reapply test (a) to all unfathomed nodes.

Step 4. Stopping Rule. If no unfathomed nodes remain, stop. Incumbent
solution is optimal. Else, return to Step 1.

The network parameters, as shown in Figure 2 and Tables 2, 3, and 4, were

input to MICROSOLVE Network Flow Programming, and an initial solution to the

relaxed problem (ZL0) was obtained. The output for the p=l and p=2 problems are

shown at Appendix E and F respectively. In these output, the source node is identi-

fied as node 19. A sink node was not explicitly provided. Rather, external flows at
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nodes 10 to 18 were set equal to -p. As can be seen from the output, the software

created a slack node which is linked to the source and to nodes 10 to 18.

All relaxed subproblems were also solved using MICROSOLVE Network Flow

Programming. Using this software, the flow through an arc can be set to a discrete

value by setting both the lower bound parameter and the upper bound parameter for

that arc equal to a specific value. Once the flow is fixed through all arcs requiring

fixed flow for a given subproblem, the problem is solved again.

Since MICROSOLVE is interactive and menu-driven, the branch and bound

algorithm is not too cumbersome for a problem of this size. Also, when 0-1 integer

flow is imposed on all arcs emanating from the source, the flow through the remain-

der of the arcs in the network is automatically integer. This can be seen by inspec-

tion of Figure 2. Therefore, the stopping rule is invoked fairly quickly, with a

maximum of [E 2i) subproblems to solve. With i=3, this only equates to a maximum

of 14 subproblems, but, as 'i' increases, the number of subproblems that potentially

need to be solved increases exponentially. However, one would expect that, in most

if not all cases, a large proportion of the subproblems would not need to be solved

because of the fathoming feature of the Branch and Bound algorithm.

The branch and bound solution trees for the p=l and p=2 problems are shown

at Figure 3 and Figure 4. The node numbers shown in the solution trees indicate the

order in which the subproblems were solved. Both the p=l and p=2 problems only

required that 4 subproblems be solved. The optimal solution obtained in both cases

agreed with the solutions found using MIP83 and LP83 above.

As shown in Figure 3, the initial solution to the relaxed p= problem was

ZL=-69.996. This initial non-integer solution is a lower bound to the integer solution.

The variables xl, x2, and x3, represent arcs S-l, S-2, and S-3 (as shown at Figure 2),

respectively. The branching is first performed on the xl variable. The xl=l case
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ZL - -69.996O(.31,.35,33)

X10 X,-

ZL - -63.996 2/TN ZL - -53

(0,2/3,1/3) (11010)

fathomed

x2-0 / X2-1 Z 5

ZL -- 48 ZL -- 58

(0,0,1) (0.1.0)

fathomed fathomed

STOP

LEGEND: ZL - lower bound

ZU = upper bound

(xl,x2,x3) - arc flows

Figure 3 - Maximal Coverage Branch and Bound (p=])
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ZL - -119.968

O (.44,.98,.58)

Xl0 Xl-1

1 ZL - -116.984

(1,.67,.33)

ZL - -106

(0,1,1)

fathomed x2-0 x2-1

STOP

0 0
ZL - -101 ZL - "111

(1.0.1) (1,1,0)

fathomed fathomed

LEGEND: ZL - lower bound

ZU - upper bound

(xl,x2,x3) - arc flows

Figure 4 - Maximal Coverage Branch and Bound (p=2)
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produces an integer solution and thus a new upper bound to the solution (ZU--53).

Node 1 is therefore fathomed. The xl-O case does not produce an integer solution,

and since the optimal solution to this subproblem (ZL--63.996) is less than the

current upper bound (ZU--53) the node cannot be fathomed. Therefore node 2 is

partitioned into two further subproblems. The node 3 subproblem produces a new

upper bound (ZU=-58) which stands as the optimal solution once node 4 is fathomed

because the node 4 subproblem produces a feasible, but sub-optimal solution.

The initial solution to the p=2 problem was ZL--l 19.968. As mentioned

above, the variables xl, x2, and x3 represent flow through arcs S-1, S-2, and S-3 of

Figure 2. The node I subproblem (xl-l) was non-integer but produced a new lower

bound (ZL--116.984). The node 2 subproblem produced an integer solution and a

new upper bound (ZU=-l 11). Nodes 3 and 4 also produced integer solutions and

therefore these nodes were fathomed. But neither the node 3 solution nor the node 4

integer solution was less than the node 2 solution, and therefore the node 2 solution

is optimal.

It is important to note that event though this is a maximal coverage problem,

the subproblems are solved as min-cost problems in MICROSOLVE because the

objective function coefficients are negative. Thus the initial solution to the relaxed

problem produces a lower bound (the largest negative) on the optimal integer

solution. Any integer solution will be greater (or less negative) than this relaxed

solution (ignoring the case where the relaxed problem immediately provides an

integer solution) and provide an upper bound on the optimal solution. The optimal

solution is therefore the integer solution that produces the biggest negative value for

the objective function. The absolute value of this optimal value represents the

expected number of observation opportunities given the facilities selected.

Using network flow software instead of LP software to solve the subproblems

improves the computational efficiency of the branch and bound algorithm. This
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advantage is derived from the fact that the basis can be represented by a tree in

network algorithms. Therefore, "it is not necessary to store or computationally

manipulate the basis inverse as in linear programming" (20:74).

1.6 Solution Procedure Using GAMS/BDMLP. The problem was also solved

using GAMS (General Algebraic Modeling System). All results were duplicated and a

typical output is shown at Appendix P and is dercribed below.

The basic components of a GAMS model are (7:10):

SETS
Declaration
Assignment of members

Data (PARAMETERS,TABLES,SCALARS)
Declaration
Assignment of values

VARIABLES
Declaration
Assignment of type
Assignment of bounds

EQUATIONS
Declaration
Definition

MODEL and SOLVE statements

DISPLAY statements

In the above list, the words that are fully capitalized indicate language

keywords. These keywords serve to identify the nature of the statements that follow

and appear before the next semi-colon.

As seen in Appendix P, the SETS group of statements are where the array

subscripts are defined. Unlike FORTRAN 77 and many other high-level program-

ming languages, the SET members do not take on integer values. For example, the

subscript I which takes on the literal characters 1, 2, and 3, could be assigned

location names such as Site1, Site2, and Site3.

The TABLE section is used to input the data associated with Wijk. GAMS does

not provide for the input of external data files. All data must appear in the source

53



code at the beginning of the model as shown in the TABLE, PARAMETERS, and

SCALARS section. Generally, data that is used in the model to produce coefficients

or right-hand-side values are identified as PARAMETERS. A multi-dimensional

parameter (of up to 10 dimensions) may also be declared and assigned data with the

TABLE statement. The SCALAR statement is reserved for model parameters thst

have a dimensionality of zero (i.e., no associated SETS) and that are not variables in

the problem.

The VARIABLES section is where the variable names and types are identi-

fied and also where the bounds on these variables can be specified. This is followed

by the EQUATIONS section where the model equations are given names and defined

algebraically. The MODEL statement allows for all or a part of the equations listed

in the EQUATIONS section to be included in the model. This implies that more than

one model can be solved in any given run but this was not attempted in this research.

The SOLVE statement directs which solver is to be used to solve the identi-

fied MODEL. Three solvers are available at AFIT which can solve the following

types of problems:

BDMLP - linear programming

MINOS - linear and non-linear programming

ZOOM - zero-one and integer programming

Finally the DISPLAY statement determines which variable will be produced

for output.

The main strength of the GAMS modelling software is obviously the ability to

formulate the problem algebraically. This greatly reduces the potential for error as

compared to software where all model equations need to be entered manually.

GAMS provides excellent error handling to assist the user in "de-bugging" the model.

This feature more than makes up for the less than adequate documentation provided

with the software.

54



The inability to input data files is an inconvenience which can be overcome

by merging ASCII files with the help of a word processor when building the GAMS

model. However, for larger problems, this deficiency could become a serious

nuisance.

2. Set Covering Formulations

As was discussed in Chapter II, the set-covering problem seeks to determine

the minimum number of facilities such that all users are situated no more then the

maximal desirable distance from the service location. Thus, unlike the p-median

problem, the number of facilities, p, is a variable instead of a constant. The problem

is formulated as follows:

minimize E XJ,

subject to

% -x4 > 0 V i,jd ibj

E. XU k I V iel

where

Ni = jiIdu S} V il

The 0-1 integer variable, xjj, is set to one when facility j is selected. The N i

variable ensures that, for any given demand location, the formulation only considers

facilities that are less than the maximal distance. The constraints ensure that all

locations are serviced and that the selected facilities arc opcn"-.
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2.1 Mathcmatical Formulation. The above set-covering model requires only

slight modifications to fulfill the needs of the GEODSS location problem. The

objective function is identical, and seeks to minimize the number of facilities, p:

Minimize p

where p is an integer variable

The observation opportunities for location i, in month j, of a type k satellite

are computed as shown previously, but are labeled here as aijk instead of wijk in the

maximal coverage formulation since observation opportunities are modeled as gains

in the network flow formulation below. This change preserves the network flow

programming notation used throughout this paper which shows gains with the letter

'a' and costs (or weights) with the letter 'w'. The minimum number of observation

opportunities for a given mission 'k' is dk, and is assumed to be constant in all states.

This assumption -is supported by operational requirement statements expressed by

orbital analysts of Air Force Space Command (26).

The constraints are similar to the maximal coverage problem:

x, - Xk 2o V i,j,k

1X = p

i i

EA aXu dk Vj, k

where Xtk is 0-1 integsr

As with the maximal coverage formulation, the number of 0-1 integer

variables is large enough to wa" rant an investigation of alternate solution methods.
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2.2 Network-Flow Formulation. As with the maximal coverage problem, a

transformation of the above mathematical formulation into a pure min-cost flow

problem was not possible. A generalized min-cost network formulation was adopted.

The resulting network is shown in Figure 5. The source has a positive slack

external flow (not shown). The arcs leading out of the source have an upper bound

of 1 and a cost of 'M'. All other nrcs have either a cost of zero, or, in the case of the

arcs leading into the 'TE' node, a cost of -1. The gain of the arcs leading out of the

source is (k+l) to allow for one unit of flow in all arcs leading out of a reached

location. As with the maximal coverage network, nodes 1,4, and 7 represent location

1 in states 1,2, and 3 respectively. Similarly, nodes 2, 5, and 8 represent location 2

and nodes 3, 6, and 9 represent location 3. Also, nodes 10, 13, and 16 represent

demand point 1, nodes 11, 14, and 17 represent demand point 2, and nodes 12, 15, and

18 represent demand point 3.

The arcs connecting locations and demand points have gains equal to the

service capacity of that location-demand point pair. Therefore, since the flow

through these arcs will either be 0 or I (as will be shown below), the flow into a

given demand point represents the amount of service provided to that particular

demand point. A lower bound for arcs leading from demand points to the 'T' sink

ensures that the demand point requirement is met. The excess coverage is automati-

cally routed to the arcs connecting the 'TE' sink since these have a cost set to -1.

Therefore, the negative external flow at sink 'T' will equal E Dk, where

k=(10,...,18). The external flow at sink 'TE' will equal EE XikAik - E Dk.

There is no requirement for the cost of all arcs leading into sink 'TE' to be set

to -1. The relative costs of these arcs could for example represent relative merit of

obtaining excess coverage for one satellite type as compared to another. This allows

for a utility function to be constructed based on operational requirements. Perhaps

the most practical way of assigning varying costs to the arcs leading into sink 'TE'
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(O,1,OAik) (OM,-1,1)

--Y®

5 18

NOTES: (1) Arcs connecting nodes 13 to 18 to
sinlks T and TE are not shown

(2) (t,u,w,a) = lower bound, upper bound,
weightc, and gain

Figure 5 - Network Flow Diagram (Set Covering)
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would be to make the assignments such that for each state 'j',

-1 < WkTE< 0 and E Wk.TE = -.

The min-cost flow will minimize the slack external flow into the source,

while encouraging excess coverage, or maximizing flow into the 'TE' sink. The

minimum requirements at each demand node, which are expressed by the lower

bounds on the arcs into the 'T' sink, determine how many arcs out of the source must

be "activated".

Given 'i' locations, 'j' states, and 'k' demand points, the total number of nodes

in the network is 3 (source and two sinks) plus the number of nodes in each state

multiplied by the number of states: k3 + j(i+k)).

As was calculated for the maximal coverage problem network, the total

number of arcs is the sum of, (1) the number of arcs out of the source, (2) the

number of arcs into the sink, (3) the number of arcs connecting the facilities and

demand points multiplied by the number of states, and (4) the number of "interstate"

arcs. This reduces to: j(i+2k+ik).

Thus, the limited version of the problem, with i=j=k=3, includes 21 nodes and

54 arcs. The network representing the actual problem, which as stated previously

should include i=10 locations, j=12 months, and k=10 satellite orbit classes, will

therefore consist of 243 nodes and 1,560 arcs.

2.3 Solution Procedure Using MIP83. The above network formulation requires

0-I integer flow through all arcs, except for the arcs into the sinks where integer

flow is required. As mentioned previously, generalized network flow software does

not guarantee integer flow since the network with gains constraint matrix is not

totally unimodular.

As shown in the maximal coverage formulation, one way to force integer flow

is of course to use integer programming software. MIP83 was used once again to

obtain solutions to the problem.
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The problem was first solved with the lower bound, Dk, on the arcs leading

into sink 'T' set equal to 2. As shown in Appendix G, all variables were declared as

0-1 integer variables except for the variables representing arcs connecting the two

sinks. The cost coefficients for arcs leading out of the source were set equal to 1000

so that these arcs would not enter the basis unless required to meet requirements

specified by the Dk in the network. The "BOUNDS" section of the input is where the

lower bounds Dk are identified. The "CONSTRAINTS" section includes m-I nodal

conservation of flow equations (where m is the number of nodes). The "NODE S"

constraint is not a conservation of flow constraint but forces at least one facility to

be selected. This constraint is redundant and could be omitted without affecting the

solution in any way.

The optimal integer solution produced by MIP83 with Dk = 2 is to select

facility 2 only. An inspection of Tables 2, 3, and 4, confirms the validity of this

solution. As can be readily observed in these tables, all facilities provide a minimum

of 2 observation opportunities to all satellite types. Therefore, from the point of

view of meeting the minimum mission demands, all choices are feasible. However,

facility 2 provides the largest number of observations overall (58) and therefore the

largest overall excess coverage. Therefore, facility 2 surfaces as the optimal choice.

Note that the actual value of the objective function (960) provides an indirect

measure of the amount of excess coverage provided by the selected facility or

facilities. In this particular case, with one facility selected at a cost of 1,000, the

amount of excess coverage is 1,000 - 960 = 40. This amount is a total of all 3 states.

This can be again verified by inspection of Tables 2, 3, and 4. Noting that the sum

of required coverage in each state is 6 (3 missions with requirements of 2 each), the

excess provided by facility 2 is:

(18-6) + (18-6) + (22-6) = 40

which agrees with the above calculation.
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Appendix H shows the output of the Dk=4 problem. As noted above, the

requirements, Dk, appear in the "BOUNDS" section of the input. This is the only

section of the Dk= 2 problem that needed to be amended. MIP83 correctly selects

facilities I and 2 given the lower bounds. This solution is again verified by inspec-

tion of Tables 2, 3, and 4 which reveal that facility 2 can no longer satisfy the

increased requirement by itself. Therefore a minimum of two facilities are required.

Sites 1 and 2 together meet the minimum demand and also combine to produce the

largest total excess coverage since site 3 has the lowest total output over all states of

48 observations (14+15+19 = 48), as compared to site I which has a total of 53

observations (17+15+21 = 53), and site 2 which has a total of 58 observations

(18+18+22 = 58).

Increasing the requirement to Dk= 6 results in the selection of sites I and 3

(Appendix I). Table 3 shows that sites 1 and 2 together only provide 5 observations

for mission 14 which falls short of the requirement. Therefore, the algorithm must

either add site 3 to meet the requirement or select a different pair of sites. Since the

objective seeks to minimize the number of facilities required to meet the demand,

the algorithm finds that it can satisfy the demand by selecting sites I and 3. This

choice is found to be optimal since it satisfies the primary objective of minimizing

the number of facilities even though there is actually a decrease in excess coverage

provided by the site I and 3 combination then was provided by sites I and 2 in the

Dk= 4 solution.

In summary, the formulation will select the minimum number of sites

required to fulfill mission requirements. This is accomplished b assigning a large

cost (M) to the selection of an arc leading out of the source. Discrimination between

feasible solutions with equal number of sites is accomplished by rewarding total

excess coverage. In this research, the amount of reward for excess coverage has been
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constant across mission types. However, a weighting scheme that would take into

account varying mission priorities could be substituted.

2.4 Solution Procedure Using LP83. The Dk = 1, 2, and 3 problems were also

solved using LP83. The LP83 output for these three problems are shown in Appendix

J, K, and L, respectively.

The LP83 input was produced by removing the single and double square

brackets of the corresponding MIP83 input. Nothing else in the MIP83 input file was

modified. As was done in the maximal coverage LP83 formulation, "equi-distri-

bution of flow" constraints were added in an attempt to force an integer solution on

the problem.

The Dk= 2 LP83 formulation produced the same integer solution as was

produced by the MIP83 formulation. Site 2 was correctly selected has the optimal

solution. However, the Dk= 4 and the Dk= 6 LP83 formulations did not return an

integer solution. Analysis of the results show that this non-integer result is valid in

the absence of an integer restriction on the flow out of the source. The model finds

the minimum feasible flow out of the source that satisfies demands (as expressed by

the lower bounds on the arcs into the sink 'T') and distributes the flow among the

available arcs out of the source such that the equi-distribution of flow constraints

are respected and a min-cost feasible optimal solution is produced. The only

restriction on the flow out of the source is that it be greater or equal to I (NODE S

constraint). In all three problems, the demands was satisfied with an external flow

of 1 at the source. In the absence of the NODE S constraint, the problem will not

return an integer solution for Dk=2 problem also.

Thus, even given the limited set of data used in this research, equi-distribu-

tion of flow constraints failed to produce integer solutions in ali cases as was the

case with the maximal coverage formulation. This result highlights the fact that the

equi-distribution of flow constraints by themselves do not guarantee integer results.
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Intuitively, these constraints must be coupled with fixed integer external flow at the

source to produce an integer solution. However, total unimodularity of the con-

straint matrix needs to be established to show with complete certainty that a

formulation will always return an integer solution.

2.5 Solution Procedure Using Branch and Bound and Microsolve Network Flow

Programming. The Branch and Bound algorithm, as outlined in Section 2.4.3 of this

report, was used to find the integer solutions to the Dk=2,4, and 6 set covering

problems. MICROSOLVE Network Flow Programming was used once again to solve

the relaxed initial and subproblems.

The initial relaxed solution to the Dk= 2 problem is shown in Appendix M.

This initial non-integer solution placed a lower bound of 258.267 on the integer

solution. As shown in Figure 6, the node I subproblem was feasible and an upper

bound of 965 was calculated by MICROSOLVE. Node 3 returned a new upper bound

of 960 which became the optimal solution once the remainder of the nodes were

fathomed. This solution agrees with the MIP83 solution to the same problem.

The solution to the initial relaxed Dk= 4 problem can be found at Appendix N

and the branch and bound solution tree is shown at Figure 7. The algorithm again

produced the same solution as the MIP83 solution. The Dk= 6 problem was also solved

using the branch and bound algorithm and produced the same solution as MIP83.

The Dk= 6 initial relaxed problem solution is at Appendix 0 and the branch and

bound solution tree is shown at Figure 8.

Not including the initial relaxed problem, six subproblems had to be solved

for the Dk= 2 problem, 10 for the Dk=4 problem, and 8 for the Dk= 6 problem.

Therefore, on the average, eight subproblems needed to be solved which is about

twice the number of subproblem solutions that was required in the maximal coverage

formulation. This greater number of branching in the set covering formulation may

be due to the fact that the source external flow is slack instead of fixed. More
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Figure 6 - Set Covering Branch and Bound (Dk= 2)
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Figure 7 - Set Covering Branch and Bound (Dk=4)
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Figure 8 - Set Covering Branch and Bound (Dk= 6)
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experimentation with varying sets of data would be required to establish a correla-

tion. As with the maximal coverage branch and bound formulation, the maximum

number of subproblems that need to be solved to complete the algorithm is E 2' where

'i' is the number of locations. For i=3, the maximum is 14.

2.6 Solution Procedure Using GAMS/BDMLP. The problem was also solved

using GAMS (General Algebraic Modeling System). All results were duplicated and a

typical output is shown at Appendix Q (GAMS is described in Section 1.6).

3. Conclusions

By definition, both the maximal coverage and set covering problems are 0-1

integer problems. These types of problems are NP complete and, depending on the

number of variables involved, may be difficult or impossible to solve using MIP

software because the number of feasible solutions that must be evaluated is explo-

sive.

The network flow formulations in this research have resulted in problems

with approximately the same number of arcs as there were variables in the mathe-

matical formulations of the maximal coverage and set covering problems. Thus, the

graphical representation of these problems has not reduced the size of the problems.

However, the network flow model does provide an increased understanding of the

dynamics of the problem by allowing the user to visualize the progress of units of

flow through the network and therefore attach physical meaning to a mathematical

solution process.

One major advantage of the net-, -rk model was to allow for the use of

network flow programming software to solve the subproblems in the Branch and

Bound algorithm. Since the network flow programming subproblems are not NP
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complete, computational efficiency is better than solving the subproblems as

standard linear programs which are NP complete.

A software package that interfaces a Branch and Bound algorithm and

generalized network flow programming software would be ideal for solving the full

size problem (i-10, j-12, k-10) which includes approximately 250 nodes and 1500

arcs. Software of this kind is not readily available. A manual solution using the

Branch and Bound algorithm is not plausible because of the large number of

subproblems that potentially need to be solved in the full scale problem. Intuitively,

once the arcs leading out of the source in both models have been integerized, the

remainder of the arcs in the network must also carry integer flow. While this char-

acteristic of the network would greatly reduce the amount of branching required by

the algorithm, the number of subproblems requiring solution could still reach E 21.

With il10 this amounts to 2,046 subproblems which clearly is prohibitive for manual

computations.

A potential major advantage of the network flow formulation is that it may

be providing a way of significantly reducing the number of 0-1 integer variables in

both the maximal coverage and set covering problems. If imposing 0-1 integer

restriction on the arcs leading out of the source does indeed force integer flow in the

remainder of the network, then the total number of 0-1 variables would be equal to

the number of locations 'i', and not the product 'ijk' of the original mathematical

formulation. This means that the network flow formulation decreases the number of

0-1 integer variables in the problem by a factor of l/jk which would open up the

option of solving the GEODSS location problem using MIP software.

Further investigation in solution procedures for this problem should be

motivated by ways of improving computational efficiency. For example, polyhedral

description techniques, such as the Gomory cutting-plane (33:367) and Lagrange
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relaxation (33:323) algorithms a-nd/or a combination of both of these, might be

attempted.
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V. MULTIOBJECTIVE MODELS

1. Maximal Coverage Formulation

The network formulation presented in Chapter IV provided a good frame-

work for addressing the objective of maximizing the number of observation opportu-

nities, Wijk. A second objective function, that of minimizing the variance in the

number of observation opportunities per satellite needs to be defined.

1.1 Varian.,e Criterion Function. The mean number of observation opportuni-

ties provided to a satellite in month j is given by:

£ I

k K

Therefore, for a given location i, the variance in the number of observation

opportunities provided to a satellite in month j is given by:

9 1
VV£ (W41k - Ud1 X -

Using the data in Tables 2, 3, and 4, the mean and variances in the number of

observation opportunities can be calculated. The rez lts are shown at Tables 5 and 4.

The objective function to minimize the sum of the variances is given by:

i J
Minimize z =2 VV X

i

1.2 Problem Formulation. The multicriteria optimization problem is formu-

lated "y adding the variance objective function to a linear programming formulation
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of the network at Figure 2. As indicated in Chapter IV, the node-arc incidence

matrix of the network is not totally unimodular and an integer solution is not

guaranteed. However, imposing a binary integer restriction only on the variables for

the arcs leading out of the source is sufficient when a series of side constraints that

impose conditions on the flow through the arcs of the network are added to the

node-arc incidence matrix. As shown at Appendix R, these are categorized as "sink-

connector flow" or "equi-distribution of flow" constraints.

1.3 Correlation of Objectives. The degree to which objectives are correlated

must be determined. If sufficiently strong correlation can be shown, then the multi-

objective problem can be solved as a single-objective problem by optimizing one or

the other objective functions. Furthermore, if strong correlation exists, solving the

multi-objective problem with the use of a weight vector may generate inconsistent

results (39:198).

A measure that suffices for the degree to which the ith and jth objectives are

correlated is the angle between the gradients ci and ci , which can be calculated as

follows (39:198):

The smaller the angle, the more the gradient vectors take on the same

orientation and therefore, the more correlated the objectives. For the multicriteria

maximal coverage formulation, the angle between the gradient vectors takes on the

naximum value of 90 degrees. This can be seen by inspection of the two equality

constraints "OBJ " and "OBJ2" (Appendix R) which represent the two objective func-

tions of the problem. Only the decision variables with non-zero coefficients are

shown in these two constraints. Since all variables in these objectives only appear in
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i/j 1 2 3

1 5.667 5 7

2 6 6 7.333

3 4.667 5 6.333

Table 5 - UU

one or the other objective, the dot product in the above formula, (cl)T c2, is zero and

therefore the angle between the vectors is 90 degrees. This indicates zero correlation

between the two objectives of the multicriteria maximal coverage formulation.

1.4 Generation of the N-Set. Two important facts concerning this problem

must be noted. First, since the number of observation opportunities is maximized

and the variancc is minimized, then the condition that "more is better" exists for

both objective functions. Thus, Pareto preference is assumed and outcome yl is pre-

ferred to outcome y2 if f yl:y 2 (50:10). Second, given that this is an integer program-

ming problem, the alternative space X is not necessarily convex. Given a non-integer

programming problem and Pareto preference, the entire set of non-dominated points

(N-points) with respe't to Pareto preference can be found by using "appropriate

mathematical programming techniques" and by varying the weights associated with

i/j 1 2 3 TOTAL

1 2.889 4.667 4.667 12.223

2 6 6 1.556 13.556

3 4.222 0.667 6.222 11.111

Table 6 - Vij
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each objective function over the preferred cone (50:33). As will be shown below, this

procedure, given the name "weighted-sum method" in this research, does not guaran-

tee the complete N-set will be generated in the case of integer programming prob-

lems.

Another technique of generating the set of N-points iF to transform one of the

objective functions fi into a constraint and then vary the right hand side of this con-

straint from the lower bound to the upper bound of fi over the alternative space, X

(50:33). Unfortunately, this technique also does not guarantee a complete N-set will

be generated for an integer problem.

If the combinatorial problem is not exceedingly large, one approach is to

generate an exhaustive list of the points in the alternative space and map each of

these points to the outcome space. The N-set can then be defined with respect to

Pareto preference. This technique does guarantee that the entire N-set will be

generated, but is of course only applicable to problems with a relatively small

number of feasible alternatives.

1.5 Weighted-Sum Method.

1.5.1 Formulation. The MIP83 program shown at Appendix R was

executed for various combinations of objective function weights. The two objective

functions are represented by the Fl and F2 variables as shown at the beginning of

the ..OBJECTIVE section of the program. These two variables take on values accord-

izg to the two equality constraints, OBJI and OBJ2, shown in the ..CONSTRAINTS

section of the program. OBJI represents the maximization of observation opportuni-

ties and OBJ2 the minimizatk,n of variance. Accordingly, the coefficients of the

variables in these two constraints are taken from Tables 2, 3, and 4 for OBJI, and

from Table 6 for OBJ2.

The node-arc incidencc matrix constraints (conservation of flow) are labeled

according to the node numbering scheme of Figure 2. As mentioned above, the "sink-
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connector" and "equi-distribution of flow" constraints ensure integer flow through

the network given that the arcs out of the source have been integerized. The "select

p facilities" equality constraint is set to the number of facilities to be selected.

1.5.2 Results and Analysis. For the p=l problem, the alternative space

consists of choosing between location 1, 2, or 3. By inspection of Tables 2, 3, 4 and 6,

the outcomes associated with these alternatives are:

y' = (53, -12.223)

y' = (58, -13.556)

y3 = (48, -11.111)

The MIP83 program was executed for various combinations of weights for the

objective functions. The results are as shown in Table 7.

1 X_2 X* (p=l) X* (p=2)

0 1 Site 3 Sites 1,3

.1 .9 Site 3 Sites 1,3

.2 .8 Site 2 Sites 1,2

.3 .7 Site 1 Sites 1,2

.4 .6 Site 1 Sites 1,2

.5 .5 Site 1 Sites 1,2

.6 .4 Site I Sites 1,2

.7 .3 Site 1 Sites 1,2

.8 .2 Site 1 Sites 1,2

.9 .1 Site I Sites 1,2

0 Site I Sites 1,2

Table 7 - Multicriteria Max Coverage Optimal Solutions
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A plot of the outcome space (Figure 9) validates the results shown in Table 7.

From this plot, the two watershed points were found to be (11,.2) = (.1819,.8181)

where there is indifference between sites 1 and 3, and (.2159,.7841) where there is

indifference between sites I or 2. The parametric decomposition is shown in

Figure 10.

-11I - 11 1

-1 1.5

-12

iN -12.5-1223

-13

-13.5 -

(58, -13.556)

48 53 58
Fl

Figure 9 - Outcome Space (p=1)

As can be seen from inspection of Figure 10, a line joining the three points of

the outcome space for the p=l problem forms a convex surface. Consequently, the

complete set of N-points, which in this cp.a;e only consists of y , y2, and y , was

obtained by varying the weights of the .,bjective functions.

The p=2 maximal coverage problem alternative space also consists of only

three points. The optimal solution must be chosen from one of the following three

pairs of locations: sites I and 3, sites 2 and 3, and sites 1 and 2. By inspection of
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Figure 10 - Parametric Decomposition (p=l)

Tables 2, 3, 4, and 6 the outcomes associated with these three alternatives are:

Sites 1,2 y = (101, -23.334)

Sites 2,3 y2 = (106, -24.667)

Sites 1,2 y3 = (111, -25.779)

Unlike the p=l problem, a plot of the outcome space shows that a line joining

the three N-points does not form a convex space. As shown in Figure 11, y2 is

actually to the left of a line drawn from y1 to y3. Consequently, as the assumption

of convexity discussed above is not valid for the p=2 problem, varying the weights

of the objective function did not reveal the y2 N-point. As shown in Table 7, the

column of optimal alternatives does not include the y 2 N-point since the value

function z = Xlf 1 + .2f 2 never touches this point as the slope (-I 1/. 2) of the function

is varied from zero to infinity.
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Figure I I - Outcome Space (p=2)

Given that the y2 was not discovered by the weighted sum approach, the

parametric decomposition shows that the watershed point between the choice for

Sites 1 and 3 and Sites I and 2 occurs at ( 1 ,X2 ) = (.1965, .8035). The parametric

decomposition is shown in Figure 12.

The fact that the weighted sum approach failed to reveal the existence of

one of the N-points underscores the problem in multicriteria optimization of

problems with integer restrictions. Since the lack of convexity means that not all N-

points will be generated, viable solutions to the problem may be overlooked. In the

p=2 problem, the three outcomes nearly form a straight line in the outcome space.

This means that, in actuality, the watershed point nearly includes all three alter-

natives. In a larger problem where it is not possible to list all outcomes, this fact

would not have surfaced.
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Figure 12 - Parametric Decomposition (p=2)

1.6 Constraint Method.

1.6.1 Formulation. The MIP83 weighted-sum method formulation was

modified to produce the constraint method formulation. As shown in Appendix S,

only the variable Fl (representing the network flow objective) is optimized, and

variable F2 (representing the variance criterion function) is constrained by a new

constraint labeled "SATISFICE". As indicated previously, the efficient frontier is

generated by repeatedly solving the Fl optimization probler iith the "SATISFICE"

constraints ranging from the lower to the upper bound of F2. These bounds are

found by "throwing out" Fl and minimizing and maximizing F2 over the alternative

space.
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An equality constraint, which appears immediately following the network

nodal conservation of flow constraints, is used to set the number of facilities, p, to

be selected.

1.6.2 Results and Analysis. With p=l, the lower and upper bounds of

F2 were found to be 11.110 and 13.556, respectively. This result is validated by

inspection of Table 4. Given the difference between the lower and upper bounds of

F2 is 2.445, it was arbitrarily decided to vary the right-hand-side of the

"SATISFICE" constraint in increments of 2.445/10 = .2445 to generate the efficient

frontier. The results are shown in Table 8.

Referring back to the plot of the outcome space for the p=l problem (Figure 9)

we see that the constraint method was successful in generating the three N-points for

this integer problem.

SATISFICE LEVEL Fl X*

13.5560 58 Site 2

13.3115 53 site 1

13.0670 53 Site 1

12.8225 53 Site I

12.5780 53 Site 1

12.3335 53 Site 1

12.0890 48 Site 3

11.8445 48 Site 3

11.6000 48 Site 3

11.3555 48 Site 3

11.1110 48 Site 3

Table 8 - Constraint Method Efficient Frontier (p=l)
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With p-2, the lower and upper bounds of F2 were found to be 23.334 and

25.779, respectively. This result is also validated by inspection of Table 6. As with

the p=1 problem, the difference between the lower and upper bounds of F2 is 2.445,

and the right-hand-side of the "SATISFICE" constraint is also varied in increments

of 2.445/10 - .2445 to generate the efficient frontier. The results are shown in

Table 9.

Unlike the weighted-sum method which had not revealed the "Site 2-3"

outcome, the constraint method is found to successfully generate all three N-points

of the outcome space (Figure 11).

Obviously, whether or not an N-point is missed using the constraint method is

a function of the size of the incremental steps taken in varying the right-hand-side

SATISFICE LEVEL Fl X *

25.7790 111 Sites 1,2

25.5345 106 Sites 2,3

25.2900 106 Sites 2,3

25.0455 106 Sites 2,3

24.8010 106 Sites 2,3

24.5565 101 Sites 1,3

24.3120 101 Sites 1,3

24.0675 101 Sites 1,3

23.8230 101 Sites 1,3

23.5785 101 Sites 1,3

23.3340 101 Sites 1,3

Table 9 - Constraint Method Efficient Frontier (p=2)

of the SATISFICE constraint. Therefore, this method does not guarantee that the

entire N-set will be generated.
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1.7 Exhaustive List Algorithm. For the combinatorial problem of selecting "p"

facilities from a set of "i" locations, the total number of possible solutions is given by

i!/(i-p)!p!. Thus, while the number of solutions is explosive with large "i", it is

possible to enumerate all feasible solutions for problems with a limited number of

candidate locations and a given "p".

The following statement follows from the definition of an N-point (50:15).

Given two criteria functions, f1 and f 2, a feasible integer solution, x', is an N-point,

y", in the outcome space iff for all other points, yJ, in the outcome space the follow-

ing logical statement is false (i.e., at least one of the inequalities is false):

(ylj a y1 ') AND (y2J 2 y2 )

If both of the above inequalities are true, then the logical statement is true

and y' is a D-point (dominated point).

The above discussion can be summarized in an algorithm to generate the

efficient frontier for relatively small combinatorial problems:

Step 1. Generate the alternative space by testing each possible combina-
tions of the decision variables against the constraints (if any).

Step 2. Map each point in the alternative space to the outcome space using
the criteria functions.

Step 3. Determine set of N-points by testing each point in the outcome
space using the above condition.

Notwithstanding the limitation in problem size, when compared to the

weighted-sum and constraint methods, the above algorithm has the advantage of

ensuring that all N-points will be generated. However, in combinatorial problems

that include non-binary integer variables, problem size becomes cven more restric-

tive since each level of the integer variable will potentially produce a new set of

feasible solutions.
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1.8 Compromise Solutions. With compromise programming, the optimal

alternative is the alternative that minimizes the norm, r, for given values of X and p.

The norm is given by

1
rYv,,) = I Ai P YJ - Y ' p ]P

m

For the purposes of this research, we assume the weights are equal and

investigate the impact of varying the parameter p on the ranking of the alternativcs.

The results for the p=l problem are shown in Table 10.

The results show that increasing p does not change the ranking of the

alternatives. This is explained by the fact that we are dealing with discrete points in

the outcome space. Varying p has varied the shape of the weighted metric, but not

X * r(y;l) r(y;2) r(y;-)

Site 2 2.445 2.445 2.445

Site 1 6.112 5.122 5

Site 3 10.000 10.000 10.000

Table 10 - Norms (p=1)

sufficiently enough to disrupt the ranking of alternatives by picking up an adjacent

N-point as the optimal choice. Intuitively, whether or not varying p will produce

varying optimal choices for a given set of weights is a factor of the number and

distribution of discrete N-points in the outcome space. More experimentation is

needed to defir itively show this.

Similar results were obtained for the p=2 problem and these are shown in

Table 11.
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X r(y;l) r(y;2) r(y;-) 1
Sites 1,2 2.445 2.445 2.445

Sites 2,3 6.330 5.175 5

Sites 1,3 10.000 10.000 10.000 ]

Table 11 - Norms (p=2)

2. Set Covering Formulation

2.1 Variance Criterion Function. The variance criterion function for the set-

covering formulation is identical to the variance criterion function of the maximal

coverage problem. It is repeated here for convenience:

I J
Minimize z = , VQ Xi

The coefficients, Vi, represent the variance at location i, in month j, and are

tabulated in Table 6.

2.2 Problem Formulation. The multicriteria set-covering problem is formu-

lated by adding the variance objective function to a linear programming formulation

of the network at Figure 5. As with the maximal coverage formulation, the node-arc

incidence matr'x of the network is not totally unimodular and an integer solution is

not guaranteed. However, imposing a binary integer restriction on the variables for

the arcs leading out of the source is sufficient to guarantee an integer solution when

a series of side constraints that impose conditions on the flow through the arcs of the

netwoik are added to the node-arc incidence matrix. As shown in Appendix T, these

are categorized as "sink-connector flow" or "equi-distribution of flow" constraints.
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2.3 Correlation of Objectives. The degree to which the objectives are correlat-

ed is determined by calculating the angle between the gradient vectors using the

formula presented earlier:

= C06.1 ( (€5V c)
Ic'12 102

Extracting the objective function coefficients from the OBJI and OBJ2

constraints in Appendix T, the angle between the two gradient vectors is found to be

approximately 4.6 degrees. This would seem to indicate a high degree of correlation

between the two objective functions and allow solution to the multicriteria optimiza-

tion problem by solving one or the other single objective problem.

Nonetheless, the exercise of generating the efficient frontier is undertaken to

attempt to identify any possible difficulties caused by the high degree of correla-

tion.

2.4 Generation of the N-set. Given that the research with the maximal

coverage problem has already revealed the deficiency in using the weighted-sum

method to generate the efficient frontier, this method will not be attempted here.

The N-set will be generated using the constraint method and an exhaustive-list

algorithm, similar to the one developed in the maximal coverage problem, will be

proposed.

2 5 Constraint Method.

2.5.1 Formulation. The MIP83 program shown in Appendix T was

executed for various combinations of objective function weights. The two objective

functions are again represented by the Fl and F2 variables as shown in the begin-

ning and end of the ..OBJECTIVE section of the program. These two variables take

on values according to the two equality constraints, OBJI and OBJ2, shown in the
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..CONSTRAINTS section of the program. OBJI represents the minimization of cost

for the network, and the coefficients for the variables are as described above. OBJ2

represents the minimization of variance. Accordingly, the coefficients for the OBJ2

variables are taken from Table 6. The "SATISFICE" constraint is used to vary the

level of the F2 objective.

The node-arc incidence matrix constraints (conservation of flow) are labeled

according to the node numbering scheme of Figure 5. As mentioned above, the "sink-

connector" and "equi-distribution of flow" constraints ensure integer flow through

the network given that the arcs out of the source have been integerized. The

..BOUNDS section, which did not appear in the maximal coverage formulation, is

where the minimum demand point requirements are specified.

2.5.2 Results and Analysis. Three distinct set covering problems were

attempted by setting the demand point requirements, Dk, equal to 2, 4, and 6, respec-

tively, for all "k". For each of these three problems, the range of F2 was determined

as before by minimizing and maximizing F2 over the feasible region.

With Dk=2 , the range of F2 is found to be 11.111 to 36.890. Using the con-

straint method, the complete set of N-points is generated as shown in Table 12. All

results are consistent with the data as shown in Tables 2 to 4. The outcome space is

shown in Figure 13.

With Dk= 4, F2 ranges from 23.334 to 36.890. The complete set of N-points is

generated using the constraint method. The results are shown in Table 13 and are

also consistent with the data shown in Chapter IV. The outcome space is shown in

Figure 14.

With Dk= 6, it can be seen by inspection of Tables 2, 3, 4 of Chapter IV that

there are only two feasible solutions that meet this level of demand: selecting Sites 1

and 3 or selecting all three sites. Therefore, as the 3-site alternative is obviously

dominated, the outcome space consists of only one N-point. Using the constraint
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SATISFICE LEVEL FI X

36.8900 960 Site 2

13.5560 960 Site 2

13.0670 965 Site 1

12.5780 965 Site 1

12.0890 970 Site 2

11.6000 970 Site 3

11.1110 970 Site 3

Table 12 - Multicriteria Set Covering Solutions (d=2)

method with F2 ranging from 23.334 to 36.890 confirms this result.

The high degree of correlation between the two objective functions does not

appear, at least on the basis of this research, to produce erratic results. In fact, in

this problem, the ranking of alternatives obtained in optimizing one objective is

opposite that obtained in optimizing the other. For example, with Dk= 2 , the min cost

ranking of alternatives would be Site 2, followed by Site I and Site 3. Conversely,

the min variance ranking would be Site 3, followed by Site 1 and .;ite 2. Therefore,

even though the angle between the gradient vectors is small, it does not appear that

optimizing one objective will implicitly optimize the other.

2.6 Exhaustive List Algorithm. The 3-step algorithm developed for the

maximal coverage problem is modified slightly for the set-covering problem. The

mapping from the discrete alternative space into the discrete outcome space is slight-

ly complicated by the fact that the level of the variables in the Fl objective repre-

senting the arcs into the excess sink must be determined for each combination of

sites:
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Figure 13 - Outcome Space (d=2)

Step 1. Generate all possible combinations. Set an upper limit of p=3 on the
number of sites aelected. (this restriction is based on the original
question asked by NLJ-'-Q which rcplest 1-site, 2-site, and 3-site
conf igurations).

Step 2. Determine the alternative~ space. For ehpo~ssible alternative X1,
verify that:

E ~XL Wk :dk VJ

where Xi is 0-1 integer

87



26

25.5-- .1 19:25, 25. 779)

25.5-

,4 2 4..5 -' (1930, 24.667)

24-

23.5

(1935, 23. 334)
23-

1925 1930 1935
F1

Figure 14 - Outcome Space (d=4)

Step 3. Map each point in the alternative space to the outcome space, using
the variance criterion function F2, and the following function for
Fl

Step 4. Determine the set of N-points by testing each poir,, in the outcome
space using the condition as described earlier in the maximal
coverage exhaustive list algorithm.

I I J E
F1 = E 1OOOX, - (E X WO- Jrd)

I 8 j k
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SATISFICE LEVEL F1 X1

36.8900 1925 Sites 1,2

25.7790 1925 Sites 1.2

25.2900 1930 Sites 2,3

24.8010 1930 Sites 2,3

24.3120 1935 Sites 1,3

23.8230 1935 Sites 1,3

23.3340 1935 Sites 1,3

Table 13 - Multicriteria Set Covering Solutions (d=4)

X r(y;l) r(y;2) r(y;-)

Site 2 2.445 2.445 2.445

Site 1 6.112 5.122 5

Site 3 10.000 10.000 10.000

Table 14 - Norms (dk=2 )

X* r(y;l) r(y;2) r(y;oo)

Sites 1,2 2.445 2.445 2.445

Sites 2,3 6.330 5.175 5

Sites 1,3 10.000 10.000 10.000

Table 15 - Norms (dk=4 )
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2.7 Compromise Solutions. As with the maximal coverage problem, we assume

the weights are equal and investigate the impact of varying the parameter p on the

ranking of the alternatives. The results for the dk- 2 problem are shown in Table 14.

The results for the dk- 2 problem are identical to the p-i problem of the

maximal coverage problem. This is a coincidence, since the set of N-points in the

dk- 2 problem is governed by the :equirements, dk, of the demand points. Also, as

was the case with the maximal coverage problem, varying the parameter p does not

result in varying the ranking of the alternatives for this set of data. Similar results

were obtained for the dkf 4 problem and these are shown in Table 15.

3. A FORTRAN-based GEODSS Optimal Location Solver

The end-product of the foregoing discussions, both in this and in the preced-

ing chapter, has been the development of a FORTRAN-based solution algorithm for

the GEODSS location problem of this research. The source code for this FORTRAN

solver is included in Appendix U.

This FORTRAN program is written in modular form, with a separate

subroutine to perform each major segment of the solution algorithm. While this

technique may not be the most efficient from a memory usage perspective, it does

present two distinct advantages. First, the flow of the solution methodology is easily

recognized by reading through the main program which primarily consists of a series

of calls to subroutines. Secondly, the modular design allows for easier code verifica-

tion and modification functions since each subroutine can be easily compiled and

executed seperately.

The FORTRAN program solves the multicriteria maximal coverage p=l, p=2,

and p=3 problems and produces an ordered list of alternatives as solution to each of

these problems. These ordered lists provide a de facto solution to the set covering

90



problem, has the solution to the set covering problem is simply the top ranked

alternative which minimizes p.

Extensive internal documentation is provided throughout the code. Addition-

al comments are provided here to further assist the reader.

3.1 Input Files. As described in Chapter I11, the input to the program consists

of the following input files (see Appendix V):

PROBA.DAT - 12x12 matrix of probability of event A, at location I, in
month J

PROBB.DAT - 12x12 matrix of probability of event B given A, at location
I, in month J

PROBC.DAT - 12X12 matrix of probability of event C given AB, at loca-
tion I, in month J

PROBD.DAT - 12x6 matrix of probability of event D, at location I, for
satellite K

PROBEDAT - six 12x12 matrices of probability of event E given ABCD, at
location I, in month J, for each satellite

PROBF.DAT - six 12x12 matrices of probability of event F given AD, at
location I, in month J, for eaci satellite

OBSREQ.DAT - 1x6 vector of monthly requirement of observations for each
satellite

where
A n sun < 6 degrees below horizon
B n wind speed < 25 knots
C v temperature > -50 C
D m satellite > 15 degrees above horizon
E a CFLOS for 5 minutes
F n satellite illuminated by the sun

3.2 Output Files. The output consists of eight files as follows:

RESULTS.OUT - three tables of top 12 alternatives ordered by deviation
from the ideal, and a table of Eij for each of the six sat-
ellites. (see Appendix W)

ALTLST.OUT - table showing alternative numbering legend used by the
software

ALTOBS.OUT - six 298x12 tables showing number of observations collected
by alternative X, in month J, on each satellite
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OBJFCN.OUT - table showing value of F1 and F2 for each alternative

UTILS.OUT - table showing utility of F1 and F2 for each alternative

FEASIB.OUT - table showing the feasibility status (true ur f'alse) of each
alternative

EFFSET.OUT - table indicating whether or not an alternative is part of the
non-dominated set

DEVIAT.OUT - table showing the Manhattan metric deviation from the
ideal for each alternative

3.3 Algorithm. The main program consists of calls to ten different subrou-

tines. The only other executable statements in the main program are the initial

assignments statements to the BLOCK vector as shown in Appendix U. The sub-

programs are executed in the following order:

(1) Subroutine PROCAL reads the probability data files and computes
PROB(I,J,K), the probability that a 5 minute block has met all the
necessary conditions for observing

(2) Subroutine EXPVAL computes EXPECT(I,J,K), the expected value of
the number of 5 minute blocks usable for observation

(3) Subroutine FEACHK reads the observation requirements file and
determine which alternatives are feasible by verifying whether or not
an alternative provides the minimum requirement in each month of
the year

(4) Subroutine GIBjCAL calculates the value of both criterion functions
for all feasible alternatives. This provides the outcome space coordi-
nates for all feasible alternatives.

(5) Subroutine EFFSET determine which alternatives are non-dominated
by comparing each outcome against all other outcomes in the outcome
space.

(6) Subroutine IDLCAL computes the outcome space coordinates of the
ideal (as defined in Chapter III).

(7) Subroutine UTILS converts the criterion function values to utils, by
assigning a utility of 0 to the lowest OBJI value and the highest OBJ2
value, and a utility of I to the highest OBJI and the lowest OBJ2
values. A linear utility function is assumed, and utilities between 0
and 1 are assigned to all other feasible alternative criterion function
values.
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(8) Subroutine DEVCAL computes the deviation from the ideal in utils.

(9) Subroutine PRIORI orders the alternatives for each subproblem (p-1,
p-2, p '0

(10) Subroutine PRTOUT prints a summary of the findings to the primary
output file &ESULTS.OUT.

3.4 Assumptions and Lmitations. As already stated above, the algorithm

assumes a linear utility function for each criterion function. Furthermore, it is

assumed that the weights placed on the criterion function are equal. Interviews with

the decision maker revealed that these assumptions are not completely groundless (5).

However, it would not be very difficult to modify the program to produce alterna-

tive solutions based on differing criterion function weights. This can be accom-

plished in subroutine DEVCAL by multiplying the objective function values by their

respective weights when calculating the deviation from the ideal (50:70).

A serious limitation of the program is the lack of sensitivity analysis. This

leaves unanswered many questions regarding the impact of varying input parameters

on the final selection. For example, how much of a change in the P(CFLOS) at a

given location is required before it is discarded as the optimal alternative?

On the positive side, the program provides an efficient way of sifting

through masses of data, and allows the decison maker to bring together meteorologi-

cal, astrodynamic, and operational factors in an analytical manner to arrive at a

solution which is defensible from a MCDM theoretical standpoint.

4. Conclusions

The research has revealed the deficiency of the weighted sum approach in

generating the set of N-points for the integer problem. The constraint method's
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ability to generate the complete set of N-points is limited by the number of steps that

are taken in incrementing the constraint level of the second objective function.

In the maximal coverage problem, with i-3 candidate locations, the number

of alternatives is limited to 3 in both the p-I and p-2 problems. In the larger prob-

lem, with i-12 locations, the alternative space includes 12 points in the p-I problem,

12!/2!10!-66 points in the p-2 problem, and 12!/3!9!-220 points in the p-3 problem.

These quantities are manageable and the alternative and outcome spaces can be

readily generated using the exhaustive-list algorithm described in this chapter.

The variance criterion function as expressed in this chapter seeks to minimize

the variance in the number of observation opportunities provided to individual

satellites from location i in month j. For solutions where the number of facilities

selected is greater than one (p>l), another way of expressing the variance criterion

function is to minimize the variance in the number of observations provided by

alternative x in month j. The difference between the two is that in the latter case,

single site coverage is not penalized as long as another site in the alternative set

provides an "average" number of observations. This represents two different views

of the problem and the decision maker needs to determine which view should be

adopted. In the FORTRAN software developed for this research, the "alternative-

based" variance criterion function is used.
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VI. CASE STUDY

1. The Set of Candidate Locations

The number of candidate locations for this example was limited to the 12

sites listed at Table 16, which are also shown at Figure 15:

Site No. Location Lat (N) Long (W)

I Sandspit 53 15 131 49

2 Churchill 58 45 94 05

3 Penticton 4928 119 36

4 Chatham 47 01 65 27

5 Torbay 47 38 52 42

6 Alert 82 30 62 20

7 Frobisher 63 45 68 34

8 Inuvik 68 18 133 29

9 London 43 02 81 09

10 Moose Jaw 50 20 105 33

11 Whitehorse 6042 13507

12 Cold Lake 5425 110 17

Table 16 - Candidate Locations

With 12 sites, the major Canadian climatological regions described in Chapter

II are well represented. It is assumed that the meteorological parameters of interest

(cloud cover, wind speed, and temperature) do not greatly vary within these regions.

Furthermore, the candidate location representing a given climate region should be
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12 2

Figure 15 - The Candidate Locations

chosen so that the weather associated with this location is typical for the area in

question. Therefore, the optimal alternative points to an area rather than a point on

the map. A group of 12 sites also provides adequate geographic distribution to solve

a 1-site, 2-site, and 3-site problem.

More sites would be needed if a study of Canadian climate revealed that the

weather in the climate region represented by a candidate locations varied signifi-

cantly. When solving the actual problem, it is therefore recommended that NDHQ

meteorologists be consulted to determine whether or not more candidate sites are

needed to provide a more complete climatic representation. However, the software

provided with this research is designed for a set of 12 candiuate sites. Increases in
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the number of sites will cause a factorial increase in required computer memory and

run time and may require alterations to the software to improve its efficiency so

that it can handle the larger problem. Taken to the extreme, a large enough increase

in the number of candidate sites would require the development of an entirely new

solution algorithm.

This example assumes that candidate locations have been pre-screencd to

ensure that they meet a number of essential criteria. First, historical weather data

must be available for the chosen location. This usually means that there is an

airfield located there, and therefore lists of Canadian airfields are of great help in

selecting candidate sites. Second, a candidate location must meet a minimum

standard of optical transmissivity (as discussed in Chapter II). For example, site sur-

veys were performed to screen the current GEODSS locations by scientist from the

Lincoln Laboratories of MIT (5). The technical details of the types of measurements

performed in such surveys were not obtained, but these should include an evaluation

of ambient lighting and particulate content of the atmosphere to ascertain whether

or not the measured levels would interfere with GEODSS operations.

There may be other essential criteria that should be considered in the pre-

screening of locations. However, as a result of interviews with the decision maker, it

is felt that only the two criterion functions included in the location model fell into

the "more is better" category (5).

2. Choosing a Representative Satellite Population

The satellite population of interest is defined as those objects "from 5000

kilometers altitude to geosynchronous altitudes in the western hemisphere", and of

"sufficient brightness to be visible to the surveillance sensor" (18). For the purposes

of this example, 6 fictitious satellites are selected:
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Satellite 1: a semi-synchronous satellite at an inclination of 65 degrees

Satellite 2 a geostationary satellite at 500 West

Satellite 3 " " at 700 West

Satellite 4 : " " at 1000 West

Satellite 5 " o at 1200 West

Satellite 6: " " at 1400 West

For the actual problem, all synchronous atellites in inclined orbits should be

included in the model to ensure that the chosen alternative provides coverage of

these orbits. Since the orbital periods for these orbits is synchronized with the

rotation of the earth, some locations will sometimes never "see" these satellites during

an observation period. It is probably not necessary to include all the geostationary

satellites of interest. This can be determined by looking at the limits of visibility

for the candidate locations. However, the most easterly and westerly satellites that

must be observed on the geostationary belt must be included.

The software provided with this research will support a large number of

satellites. However, from a data gathering perspective, it is better to minimize the

number of satellites in the solution procedure. To this end, it is asserted without

rigorous astrodynamical proof that the alternative that provides optimal coverage of

the synchronous population will also provide optimal coverage of the non-synchro-

nous satellites. This assertion seems logical since these non-synchronous satellites

will eventually pass over all points on earth at varying times of the day and should,

therefore, be observable at some point in time. Therefore, it appears non-synchro-

nous satellites can be safely excluded from the model.

One potentially serious limitation of the model is that elliptical orbits cannot

be included at this point due to the fact that the ETAC CFLOS model is limited to

determining the P(CFLOS) to satellites in circular orbits. Thus, elliptical synchro-
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nous orbits (such as the Molniya) are not included in this numerical example. To

work around this problem, ETAC might be able to provide P(CFLOS) given a

frequency distribution of elevation angles at a given location to a satellite in an

elliptical orbit. Alternatively, the ETAC model might be upgraded to include ellipti-

cal orbits (48). However, before this additional developmental effort is undertaken,

an impact analysis of leaving out the synchronous elliptical orbits on the selection of

the optimal alternative should be performed.

3. Feasibility Check of Geostationary Satellite Coverage

By calculating the limits of visibility of the geostationary belt from each can-

didate location, it is possible to have a quick verification of whether or not a I-site,

2-site, or 3-site solution exist. The plot in Figure 15 shows that the 1-site problem is

infeasible just on the basis of covering the five geostationary satellites. If a 1-site

solution is desired, than additional candidate locations should be selected near the

midpoint (in longitude) of the required geostationary coverage.

4. Data Collection and Input Files

The input data for this numerical example is shown in Appendix V. The data

is arranged in seven different input files. The PROB files represent the event

probabilities as described earlier in Chapter V. The FORTRAN format of these files

is as follows:

PROBA.DAT 12 single spaced rows of 12 columns each formatted as 12F4.2
(location by month)

PROBB.DAT 12 single spaced rows of 12 columns each formatted as 12F4.2
(location by month)

PROBC.DAT 12 single spaced rows of 12 columns each formatted as 12F4.2
(location by month)
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Figure 16 - Limits of Visibility

PROBD.DAT 12 single spaced rows of 6 columns each formatted as 6F4.2
(location by satellite)

PROBE.DAT 6 consecutive matrices of 12 single spaced rows with 12 col-
umns formatted as 12F4.2 - A character string (e.g., Satellite 1)
must be inserted before the first table and between all other
tables

PROBF.DAT 6 consecutive matrices of 12 single spaced rows formatted
exactly the same way as the PROBEDAT file

As explained earlier in Chapter III, the PROBF.DAT data which represents

P(FIAD) is obtained from P(FAD)/P(AD). This probability is calculated by dividing

the number of minutes event FAD occurs by the number of minutes event AD occurs

for each month of the year, for each location, and for each satellite. As can be seen

100



from the probability files, the P(FIAD) is binary during non-geostationary eclipse

months, and is .91 or .97 during four months of the year where the satellite is in fact

situated above the 15 degree elevation threshold. The data for the semi-synchronous

satellite (satellite 1) shows similar seasonal trends.

All PROBF.DAT data was obtained by running "pass scheduler" software

developed at AFIT by Maj Kelso (22). All other probability data was graciously pro-

vided by ETAC (48).

The OBSREQ file is a row vector representing the monthly requirement of

observations that must be collected on each satellite to maintain an accurate record

of the orbital parameters. These requirements, which can be obtained from

AFSPACECOM, are typically in the order or 30 observations/month (26). The row

vector is formatted as 6F5.0.

5. Analysis of Results

The results are shown in Appendix W, which includes the RESULTS.OUT,

ALTLST.OUT, FEASIB.OUT, AND EFFSET.OUT files. The other output files,

namely ALTOBS.OUT, OBJFCN.OUT, DEVIAT.OUT, and UTILS.OUT, are not

included with this report. These are quite large and do not necessarily need to be

reviewed by the user to obtain an appreciation of the findings.

The ALTLST.OUT file provides a legend of the alternative numbers assigned

to the various possible combinations of sites used throughout the program. The

twelve p=l alternatives use alternative numbers I to 12, the sixty-six p=2 alternatives

use numbers 13 to 78, and the two hundred and twenty p=3 alternatives use numbers

79 to 298.

The RESULTS.OUT file shows that there are no feasible p=l alternatives. As

shown in Figure 15, this is due to the fact that none of the sites provides coverage of
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all five geostationary satellites. This is not to say that t .re does not exist a location

in central Canada that would provide such coverage.

The output also shows that there are 12 feasible p=2 alternatives. Ten of

these feasible alternatives are non-dominated (in N-set). The ordered list of feasible

alternatives is repeated below at Table 17, along with the sites reresented by the

ALT NO SITE NO Locations

15 1-4 Sandspit, Chatham

55 5-10 Torbay, Moose Jaw

35 3-5 Penticton, Torbay

57 5-12 Torbay, Cold Lake

39 3-9 Penticton, London

20 1-9 Sandspit, London

75 9-12 London, Cold Lake

48 4-10 Chatham, Moose Jaw

16 1-5 Sandspit, Torbay

73 9-10 London, Moose Jaw

50 4-12 Chatham, Cold Lake

34 3-4 Penticton, Chatham

Table 17 - Ordered Alternatives (p=2)

alternative numbers. It is immediately noted that none of the northerly locations are

included in the list of feasible alternatives. This is probably due in part to the fact

that the long periods of daylight in the summer and long winter nights introduce

large variances during these seasons. Also, northerly locations afford very poor

coverage of the geostationary belt and would rarely afford the necessary coverage in

combination with only one southerly location.
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We also note that none of the feasible pairs are composed of adjacent sites,

and that generally each pair of sites includes a location in both eastern and western

Canada. There are at least two reasons why this occurs. First, the fact that geosta-

tionary belt was populated with eastern and western satellites forces a solution that

includes east and west sites. Secondly, it is known that the P(CFLOS) increases with

increasing elevation angles (47). Therefore, the optimal location should also be the

pair of sites that maximize the elevation angle to the satellite population.

Of final note, it is interesting to see that the primary alternative includes

Chatham, New Brunswick. This happens to be the location of the Canadian Baker-

Nunn satellite tracking station which is currently operational as an optical (film)

satellite tracking system. However, while the Cold Lake site was at one time also

active as a Baker-Nunn site, the Chatham-Cold Lake combination is ranked near the

bottom at number 11.

The program found that 90 of the 220, p=3 alternatives were feasible. Of

these, only 23 were non-dominated. This is an important fact, since if the assump-

tion of equal weights for the criterion functions w-s put in doubt, and new weights

were determined, the optimal 3-site alternative must by definition be one of the 23

non-dominated solutions. This means that only about 10% of the total number of

alternatives would need to be scrutinized to determine which alternative is optimal.

As with the p=2 problem, the feasible alternatives were ordered by ascending

order of deviation to the ideal. The ordered list is shown in Appendix W and

repeated in Table 18 which also shows the site names. A marked difference between

the p=2 and p=3 alternative set is that the 3-site alternatives favor the northerly

locations while the 2-site solutions do not. All four northerly locations (Alert,

Inuvik, Frobisher, and Whitehorse) appear at least once in the top 12 alternatives. In

fact, a northerly location is included in all but three of the top 12 alternatives.
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ALT NO SITES Locations

273 6-9-10 Alert, London, Moose Jaw

103 1-4-10 Sandspit, Chatham, Moose Jaw

283 7-9-10 Frobisher, London, Moose Jaw

185 3-4-11 Penticton, Chatham, Whitehorse

89 1-3-4 Sandspit, Penticton, Chatham

240 4-10-11 Chatham, Moose Jaw, Whitehorse

120 1-7-9 Sandspit, Frobisher, London

289 8-9-10 Inuvik, London, Moose Jaw

105 1-4-12 Sandspit, Chatham, Cold Lake

225 4-6-10 Chatham, Alert, Moose Jaw

275 6-9-12 Alert, London, Cold Lake

242 4-1 1-12 Chatham, Whitehorse, Cold Lake

Table 18 - Ordered Alternatives (p=3)

For example, the optimal alternative of the p=3 problem (Alt No. 273)

includes Alert and London, which are the most northerly and southerly location, of

the set of candidate set. The Alert-London pair appears again at alternative number

275. Further scrutiny of the ordered list shows that whenever London is chosen, the

alternative also includes a northerly site. This occurs in 5 of 12 cases. The list also

shows that an alternative is never composed of two northerly sites.

The popularity of northerly sites for the p=3 problem may be partly e-

xplained by the fact that the 3-site solutions can take advantage of the long winter

observing period provided by northerly locations as long as a pair of southerly sites

are available in the summer months to provide the necessary observations. A

minimum of two southerly sites are required to provide coverage of the geostation-

ary belt.
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An additional advantage in locating north can be seen by inspection of the

RESULTS.OUT table entitled "Expected Number of Observations for Sat 1". This

table shows that, in winter months, the northerly locations provide better coverage

of the synchronous orbits. This is due to the obvious fact that the chances of seeing

a near-polar orbiting satellite increase as you increase your latitude (north or south).

The optimal solution to the GEODSS set covering problem is found simply by

selecting the top ranked alternative from the list with the smallest "p" value. For

this example, the optimal set covering alternative is Alternative 15.
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VII. CONCLUSION

I. Summary

This research has presented a study of the maximal coverage p-median and of

the set covering facility locatio:i problems as applied to the GEODSS facility

location problem. The classical single-objective mathematical formulations of both

of these problems were converted into network-flow formulations and various

solution methodologies were developed using a scaled-down version of the GEODSS

problem.

The next step of the research was the introduction of a second criterion

function into the problem. This second function consisted of minimizing the sum of

the variance in coverage at the selected locations. The research revealed the

deficiencies of MOLP (multiobjective linear programming) techniques in generating

the efficient frontier of an integer problem. A "brute-force" solution algorithm was

developed and coded in FORTRAN 77 that generates all feasible alternatives,

determines which of these are non-dominated, and then provides an ordered list

using paired comparisons with the ideal.

A numerical example was presented which showed the difficulty in finding a

feasible one-site solution given the need to observe a wide segment of the geostation-

ary belt. The example also showed that, for a given satellite population, the optimal

alternative must for similar reasons include two southerly locations. The example

revealed that while two-site solutions therefore exclude northerly locations, three-

site soltions will usually include a northerly location.
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2. Conclusions

While the numerical example presented in Chapter 6 included only a limited

set of satellitcs, and excluded the synchronous elliptical Molniya orbit, two tentative

conclusions can be drawn pending analysis of new data which would hopefully

include the Molaiya and additional sites.

First, coverage -)f the geostationary belt is a dominating force in the selection

of the optimal alternative. This coverage probably needs to be accomplished by a

minimum of two southerly locations.

Second, if a third site is added to this pair, then it seems reasonable to want

to locate north, especially if highly inclined synchronous orbits are a part of the

satellite population.

3. Recommendations for Further Study

The GEODSS location problem is solved by making use of the concepts and

theories of three distinct disciplines. These are the fields of operations research,

astrodynamics, and meteorology. The solution methodology proposed in this research

could be improved by further work in any or all three of these areas.

A major limitation of the solution methodology is the lack of sensitivity

analysis. A procedure needs to be devised to determine the scnsitivity of the solution

to the input parameters.

If the model needs to be applied to problems involving a larger number of

locations, then a multicriteria integer solver algorithm, perhaps based on the Branch

and Bound algorithm, could be developed.,

The effects of the moon on the GEODSS are not modelled in this research.

This large source of light in the night sky negates GEODSS tracking of satellites

within 15 degrees of the full moon (14). It is debatable whether or not lunar effects
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need to be included in the model. Since operations can continue in other parts of the

sky, the problem with the moon might be dismissed vy scheduling passes at other

times. However, the model presented here can easily accept an additional term in

the probability equation to take into account the effect of the moon.

The amount of sunlight reflected by a satellite is a function of the solar

phase angle. Essentially, this angle provides an indication of what portion of the

satellite is illuminated (17:23). The effect is similar to the various phases of the

moon. It must be determined whether or not, for a given orbit, the distribution of

reflected solar flux from a satellite varies from location to location.

The model does not reward redundant coverage (simultaneous coverage of a

satellite by more than one site). Redundancy of coverage is an important operational

consideration that is invoked to ensure continued observation flow in spite of

isolated site failures. The decision to provide redundancy involves a tradeoff

between cost and operatiinal feasibility. Consideration might be given to providing

for redundancy of coverage by obtaining a mobile or relocatable system. For

example, in the 3-site solutions which involve northern sites, the northerly locations

could be equipped with relocatable systems.

Meteorological considerations are a key part of this problem. More in-depth

study of the Canadian climate is required to obtain a complete set of regions of

homogeneous climatology. Within each of these regions, a representative location

with historical weather data is chosen, and probability tables generated. These could

then be input in the FORTRAN program provided herein assuming the final set is

not too large.

The ETAC CFLOS model might be upgraded to include an algorithm to

generate positions of synchronous, and elliptical orbits. Alternatively, a way of

obtaining estimates of the P(CFLOS) from a given location based on the frequency

distribution of the elevation angle to the satellite might be developed.
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Appendix A: Max Coverage MIP83 (p-1)

..TITLE

MAXIMAL COVERAGE MIP83 FORMULATION (p-I)

-.OBJECTIVE MAXIMIZE

*source connectors

0 [[XS 1]] + 0 [[XS2]] + 0 [[XS3]]

*state 1

+ 8 [[X110]] + 5 [[XIl11]] + 4 [[XI 12]]

+ 3 [[X210]1 + 6 [[X21 1]] + 9 [[X212]]

+ 2 [[X310]] + 7 [[X31 1]] + 5 [[X312]]

*state 2

+ 6 [[X413]] + 2 [[X414]] + 7 [[X41 5]]

+ 9 [[X513]] + 3 [[X514]] + 6 [[X515]]

+ 4 [[X613]] + 6 [[X614]] + 5 [[X615]]

*state 3

+ 4 [[X716]] + 8 [[X7171] + 9 [[X718]]

+ 6 [[X816]] + 7 [[X817]] + 9 [[X818]]

+ 3 [[X916]] + 9 [[X917]] + 7 [[X918]]

*interstate links

+ 0 [[X 14]] + 0 [[X25]] + 0 [[X36]]

+ 0 [[X47]] + 0 [[X58]] + 0 [[X69]]

*sink connectors

+0 [IiOTI +0 [X1IT] +0 [XI2T]

+0[XI13T] + 0 [X 14T] + 0 [XI15T]

+ 0 [XI16T] + 0 [I7T] + 0 [X I8T]

*select 'p' facilities
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..CONSTRAINTS

NODE S:XSI +XS2+XS3-p-0

NODE l:X110+Xlll+Xl12+X4-4XSI-0

NODE 2:X210 + X211 + X212 + X25- 4 XS2 - 0

NODE 3: X310 + X311 + X312 + X36- 4 XS3 - 0

NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58- 4 X25 - 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 - 0

NODE 7: X716 + X717 + X718 - 3 X47 -0

NODE 8: X816 + X817 + X818 - 3 X58 = 0

NODE 9: X916 + X917 + X918 - 3 X69 - 0

NODE 10: XOT- XI10- X210- X310 - 0

NODE II:XIIT-X11 -X211 -X311 =0

NODE 12: X12T- XI12- X212- X312 = 0

NODA 13: X13T - X413 - X513 - X613 = 0

NODE 14: XI4T - X414 - X514 - X614 = 0

NODE 15: X15T - X415 - X515 - X615 = 0

NODE 16: XI6T - X716 - X816 - X916 = 0

NODE 17: X17T - X717 - X817 - X917 = 0

NODE 18: X18T - X718 - X818 - X918 = 0

* for the next constraint, coefficient of 'p' is (j*k)
* where
* = number of states (months)
* k = number of demand locations (missions)

NODE T:- XIOT - XIIT - XI2T
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- X13T - X14T - X15T

- X16T - X17T- X18T + 9 p = 0

* select 'p' facilities
p I

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
MIP Strategy: I
Variables: 46

Integer: 45
Constraints: 21

0 LE, 21 EQ, 0 GE.
Non-zero LP elements: 93
Disk Space: OK bytes.
Page Space: 8K bytes.
Capacity: 7.7% used.
Estimated Time: 00:00:11

Iter 44
Solution Time: 00:00:01
*Mayhave*ALTERN ATE SOLUTION

Optimal Solution: 74.7778 Max Node Depth: 590 Limit: NONE

Solution: 58.0000 Iter: 51 Nodes: 7 Iteration Time: 00:00:08
INTEGER SOLUTION

File: Form 8/12/90 10:29:42 Page 1-1
SOLUTION (Maximaied): 58.0000 OPER767 PROJECT I

I Variable I Activity I Cost I Variable I Activity I Cost

XS1 0.0000 0.00001 XS2 1.0000 0.0000

I XSS 0.0000 0.0000 X1O 0.0000 8.00001

I Xll 0.0000 5.00001 X112 0.0000 4.0000
-.I ...... . 0000 3.... . 0000.. ...... X ..1 . .0000.. . 0000...... . ...........
I X210 1.0000 3.0000 X211 1.0000 6.0000

I X212 1.0000 9.0000 X310 0.0000 2.0000

I X311 0.0000 7.00001 X312 0.0000 5.0000

X413 0.0000 6.00001 X414 0.0000 2.00001

IX415 0.0000 7.00001 X513 1.0000 9.00001

I X514 1.0000 3.00001 X515 1.0000 6.00001

I X613 0.0000 4.0000 X614 0.0000 6.00001
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File: Form 8/12/90 10:29:42 Page 1-2

SOLUTION (Maximised): 58.0000 0PER767 PROJECT 1

IVariable IActivity ICost IVariable IActivity ICost I

--- X----- 0.0000 5.0000-- X716 0.0000-------------.0000 --- I
I X616 0.0000 5.00001I X718 0.0000 4.00001I

I X717 0.0000 8.00001I X718 0.0000 7.00001I

I X816 0.0000 0.00001 X817 0.000 0.00001I

I X818 1.0000 0.00001 X6 0.0000 0.00001I

I X17 .0000 .0000 I X18T 0.0000 .00001I

I X12T 0.0000 0.00001 X25T 1.0000 0.00001

I X36T .0000 0.00001 X47T .0000 0.00001

I X18T 1.......................0000 0.0001 X17T 1.000 .0000

I X68T 1.0000 0.00001 X6 0.0000 0.00001

I NODE 2 1.0000= 0.00001 NODE 1 .0000= 0.00001

I NODE 1 .0000 0.00001 X13 NOE 1.0000= 0.0000

ile NoE 88./01200/0NOE90 10:20000 Pag 010003

SOLUNO 10 ax0.0000):0.0000 I ODER6 PROEC 0 100= 000

I NO12 .0000= 0.0000 1 NODE 1 .0000= 0.0000

-- -- -- -- -- - -- -- -- -- -- - -- -- -- -- - -- -- -- -- -- - ---112-- -



INODE 14 0.0000 = 0.0000 I NODE 15 0.0000 = 0.00001

I NOD---l---0)000=----0.00001---NOD---l- 0.0000= 0.00001-----

I NODE 16 0.0000= 0.0000 1 NODE T7 0.0000 = 0.0000 1

File: Form 8/12/90 10:29:42 Page 1-5
CONSTRAINTS: OPER767 PROJECT 1

IConstrainti Activity I RHS IConstraintl Activity I RHS I

I Row 21 1.0000 = 1.00001

Total Error: 0.000000
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Appendix B: Max Coverage MIP83 (p-2)

..TITLE

MAXIMAL COVERAGE MIP83 FORMULATION (p- 2 )

..OBJECTIVE MAXIMIZE

*source connectors

o [[XS1]] + 0 [[XS2]] + 0 [[XS3]]

*state I

+ 8 [[XIIO]] + 5 [[XlII]] + 4 [[XI12]]

+ 3 [[X210]] + 6 [[X211]] + 9 [[X212]]

+ 2 [[X310]] + 7 [[X31 1]] + 5 [[X312]]

*state 2

+ 6 [[X413]] + 2 [[X414]J + 7 [[X415]]

+ 9 [[X513]] + 3 [[X514]] + 6 [[X5151]

+ 4 [[X613]] + 6 [[X6141] + 5 [[X615]]

*state 3

+ 4 [[X716]] + 8 [[X717]] + 9 [[X718]]

+ 6 [[X816]] + 7 [[X817]] + 9 [[X818]]

+ 3 [[X916]] + 9 [[X917]] + 7 [[X918]]

*interstate links

+ 0 [[X14]] + 0 [[X25]] + 0 [[X36]]

+ 0 [(X47]] + 0 [[X58]] + 0 [[X69]]

*sink connectors

+0 [XIOT] +0 [XIlT] +0 [X12T]

+ 0 [XI3T] + 0 [X14T] + 0 [XI5T]

+ 0 [X16T] + 0 [XI7T] + 0 [XI8T]

*select 'p' facilities
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+0p

..CONSTRAINTS

NODE S:XSI + XS2 +XS3-p-0

NODE l:XIO+Xlll+XI12+XI4-4XSI-0

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 - 0

NODE 3: X310 + X311 + X312 + X36 -4 XS3 -0

NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 - 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 - 0

NODE 7: X716 + X717 + X718 - 3 X47 = 0

NODE 8: X816 + X817 + X818 - 3 X58 - 0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE 10: XIOT - X110 - X210 - X310 = 0

NODE 1:XIIT-Xlli -X211 -X311 =0

NODE 12: XI2T - X112 - X212 - X312 = 0

NODE 13: XI3T - X413 - X513 - X613 = 0

NODE 14: XI4T - X414 - X514 - X614 = 0

NODE 15: XI5T - X415 - X515 - X615 = 0

NODE 16: X16T - X716 - X816 - X916 = 0

NODE 17: XJ7T - X717 - X817 - X917 = 0

NODE 18: X18T - X718 - X818 - X918 = 0

---------------------------------------------------- *
* for the next constraint, coefficient of 'p' is (j*k)
* where
* j number of states (months)
* k = number of demand locations (missions)
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NODE T: - XIOT - XIIT - X12T
- X13T - XI4T - X15T
- XI6T - XI7T - X18T + 9 p - 0

* 3elect 'p' facilities
p=2

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
MIP Strategy: I
Variables: 46

Integer: 45
Constraints: 21

0 LE, 21 EQ, 0 GE.
Non-zero LP elements: 93
Disk Space: OK bytes.
Page Space: 8K bytes.
Capacity: 7.7% used.
Estimated Time: 00:00:11

Iter 53
Solution Time: 00:00:02
UNIQUE SOLUTION

Optimal Solution: 128.6364 Max Node Depth: 590 Limit: NONE

Solution: 111.0000 Iter: 60 Nodes: 7 Iteration Time: 00:00:10
INTEGER SOLUTION

File: Form 8/12/90 10:27:32 Page 1-1
SOLUTION (Maximised):. 111.0000 OPER767 PROJECT 1

Variable I Activity I Cost I Variable I Activity I Cost

I XS1 1.0000 0.0000 XS2 1.0000 0.0000

1 XS3 0.0000 0.00001 X110 1.0000 8.00001
I Xlll 1.0000 5.0000 Xl12 1.0000 4.0000

I X210 1.0000 3.0000 X211 1.0000 6.0000

I X212 1.0000 9.0000 X310 0.0000 2.0000

I X311 0.0000 7.0000 X312 0.0000 5.0000

I X413 1.0000 6.0000 X414 1.0000 2.0000
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--- X--1----1.0000----7.0000 ----X51-3 -- 1.0000 ---9.0000 - -I-

I X416 1.0000 7.00001 X613 1.0000 6.00001I

I X613 0.0000 4.0000 I X614 0.0000 6.00001I

File: Form 8/12/90 10:27:32 Page 1-2
SOLUTION (Maximnised): 111.0000 0PER767 PROJECT 1

IVariable IActivity ICost IVariable IActivity ICost I

I X615 0.0000 5.00001I X716 1.0000 4.00001I

I X717 1.0000 8.00001I XTIS 1.0000 9.0000 I

I X816 1.0000 6.00001I X817 1.0000 7.00001

I X818 1.0000 9.00001 X916 0.0000 3.00001I

I X017 0.0000 9.00001I X218 0.0000 7.00001I

I X14 1.0000 0.00001 X25 1.0000 0.00001

I X36 0.0000 0.00001I X47 1.0000 0.00001

I X58 1.0000 0.00001 X69 0.0000 0.00001I

I X1OT 2.. .0000 0..................0000 I X11T 2.0000 0.0000

I X12T 2.0000 0.00001 MIX T 2.0000 0.00001

File: Form 8/12/9o 10:27:32 Page 1-3
SOLUTION (Maximized): 111.0000 OPER767 PROJECT 1

IVariable IActivity ICost IVariable IActivity ICost I

--- X14T 2.0000 0.0000-1- X15T 2.0000-- 0.00001--------------

I X14T 2.0000 0.00001I X15T 2.0000 0.00001I

I X18T 2.0000 0.00001 p 2.0000 0.00001

File: Form 8/12/90 10:27:32 Page 1-4
CONSTRAINTS: OPER767 PROJECT 1

IConstrainti Activity I RHS IConstrainti Activity I RHS I
---NODE-----0.0000=---0.----00---NODE--1- 0.0000---=-0.00001--

I NODE 2 0.0000 = 0.0000 1 NODE 1 0.0000 = 0.00001I

---NODE--4--0.0000=---0.0000---I-NODE-- 5-0.0000---=-0.--000 ---

I NODE 2 0.0000 = 0.0000 1 NODE 3 0.0000 = 0.00001I
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I NODE 8 0.0000 = 0.0000 1 NODE 9 0.0000 = 0.00001

I NODE 10 0......00 .00001 NODE 11 0..........000= 0.00001.

I NODE 12 0.0000 = 0.0000 1 NODE 11 0.0000 = 0.00001
NODE 14 0........................000 .001N D 5 .00 .00001....

I NODE 16 0.0000 = 0.0000 1 NODE 13 0.0000 = 0.00001I

I NODEl14 0.0000- 0.0000 1 NODE T5 0.0000 = 0.00001

RI 2PE16 2.0000 = .0000 1 ND 7 000 .00

T ODalError 000=0.00: OD 0.0000=000001

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..118. ..



Appendix C. Max Coverage LP83 (p-1)

..TITLE

MAXIMAL COVERAGE LP83 FORMULATION (p-l)

..OBJECTIVE MAXIMIZE

*source connectors

OXS1 +0XS2 +OXS3

*state 1

+ 8 XIIO + 5 X1II + 4 X112

+ 3 X210 + 6 X211 + 9 X212

+ 2 X310 + 7 X311 + 5 X312

*state 2

+ 6 X413 + 2 X414 + 7 X415

+ 9 X513 + 3 X514 + 6 X515

+ 4 X613 + 6 X614 + 5 X615

*state 3

+ 4 X716 + 8 X717 + 9 X718

+ 6 X816 + 7 X817 + 9 X818

+ 3 X916 + 9 X917 + 7 X918

*interstate links

+ 0 X14 + 0 X25 + 0 X36

+ 0 X47 + 0 X58 + 0 X69

*sink connectors

+0 XIOT +0 XIIT +0 XI2T

+0 X13T +0 XI4T +0 XI5T

+0 X16T +0 X17T +0 XI8T

*select 'p' facilities
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+0p

..CONSTRAINTS

NODE S:XS1 +XS2+XS3- p- 0

NODE I:XII0+X11+XI12+XI4-4XSI-0

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 - 0

NODE 3: X310+ X311 + X312 + X36 -4 XS3 -0

NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 - 0

NODE 6: X613 + X614 + X615 + X69- 4 X36 - 0

NODE 7: X716 + X717 + X718 - 3 X47 - 0

NODE 8:X816 + X817 + X818- 3 X58 - 0

NODE 9: X916 + X917 + X918 - 3 X69 - 0

NODE 10: XIOT - XI10 - X210 - X310 - 0

NODE 1:XIIT-XII -X211 -X311 =0

NODE 12: X12T- X112- X212 - X312 = 0

NODE 13: XI3T - X413 - X513 - X613 = 0

NOD 14: XI4T - X414 - X514 - X614 = 0

NODE 15: X15T - X415 - X515 - X615 = 0

NODE 16: X16T - X716 - X816 - X916 = 0

NODE 17: XI7T - X717 - X817 - X917 = 0

NODE 18: X18T - X718 - X818 - X918 = 0

* for the next constraint, coefficient of 'p' is (j*k)
* where
* j = number of states (months)
* k = number of demand locations (missions)
- ------------------------------------------------
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NODE T:-XIOT-XIIT-Xl2T
- X13T - XI4T- XI5T
- X16T - X17T- XI8T + 9 p = 0

* select 'p' facilities

pI

* source connector flows
XSI <- I
XS2 <- I
XS3 <- I

* sink-connector flows
XOT - p m 0
XIIT-p -0
X12T - p - 0
XI3T - p -0
X14T - p - 0
XI5T - p - 0
X16T - p - 0
XI7T - p= 0
XI8T - p - 0

* equi-distribution of flow at each location

X11O- XIII - 0
X1IO- X112 -0
XlII -X112=O
XIIO-XSI -0
XIIO-XI4 -0

X210- X211 - 0
X210 - X212 - 0
X211 - X212 - 0

X210-XS2 -0
X210-X25 -0

X310 - X311 = 0
X310 - X312 = 0
X311 - X312 = 0
X310-XS3 =0
X310-X36 =0

X413 - X414 = 0
X413 - X415 = 0
X414 - X415 = 0
X413-X47 =0
X14 - X47 = 0

X513 - X514 = 0
X513 - X515 = 0
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X514 - X515 - 0
X513 -X58 0o
X25 -X58 0

X613 - X614 - 0
X613 - X615 - 0
X614 - X615 =0
X613 -X69 -0
X36 - X69 -0

X716 - X717 - 0
X716 - X718 - 0
X717 - X718 - 0
X716 -X47 -0

X816 - X817 - 0
X816 -X818 -0
X817 - X818 - 0
X81C -X58 -0

X916 - X917 *0
X916 -X918 0
X917 - X918 -0
X916 -X69 -0

Statistics-
LP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
Variables: 46
Constraints: 75

3 LE, 72 EQ, 0 GE.
Non-zero LP elements: 198
Disk Space: OK bytes.
Page Space: 28K bytes.
Capacity: 15.7% used.
Estimated Time: 00:00:39

Iter 44
Solution Time: 00:00:03
*Mayhav*ALTERN ATE SOLUTION

File: Forini 9/03/90 23-53:31 Page 1-1
SOLUTION (Maximixed): 58.0000 OPER767 TERM PROJECT -

IVariable IActivity I Cost I Variable IActivity I Cost I

IXS1 0.0000 0.00001I XS2 1.0000 0.00001

IXS3 0.0000 0.0000 I X110 0.0000 8.00001

IX111 0.0000 5.0000 1 X112 0.0000 4.00001I

I X210 1.0000 3.0000 1 X211 1.0000 6.00001I
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1 X212 1.0000 9.00001I X310 0.0000 2.00001I

I X311 0.0000 7.00001 X312 0.0000 5.00001

I X413 0.0000 6.00001I X414 0,0000 2.00001I

I X416 0.0000 7.00001I X513 1.0000 9.00001

I X514 1.0000 3.00001 X515 1.0000 6.0000 I
I X613 0.0000 4.00001I X614 0.0000 6.0000 I

File: Formi 9/03/90 23:53:31 Page 1-2
SOLUTION (Maximized): 58.0000 OPER767 TERM PROJECT -

IVariable IActivity ICost I'Vriable Activity ICost I
I X615 0.. .0000 5.............000I X1 .0000 4..0000.........

I X616 0.0000 5.00001I X716 0.0000 4.0000 1

I X717 0.0000 8.00001I X98 0.0000 7.0000 I
--- X14--- 0.0000 0.0000- I- X2-5------- 1.0000 0.0000 -------I
I X816 0.0000 0.0000 1 X817 0.0000 0.0000 I
I X818 1.0000 0.0000 1 X6 0.0000 0.00001I

I X17 .0000 .00001I X18T .0000 .00001

I X14T .0000 0.00001I X23T 1.0000 0.0000 I

I X34T 0.0000 0.00001I X47T .0000 0.00001
I X18T 1.0000 0.0000 I X17T 1.0000 0.0000 I------------------
I X18T 1.0000 0.00001 X6 p 0.0000 0.00001

File: Formi. 9/03/90 23:53:31 Page 1-3
CONSTRINTS (Mxmzd:000PER767 TRM PROJECT -

I VaraleI Activity I Rost IVnaraletI Activity I CHs

I NODE S 1.0000 0.00001 IOD 1 0.0000 0.0000 I
----------- -- -- -- -- -- - -- -- -- -- - -- -- -- -- -- - ---12 3- - -



NODE 2 0.0000= 0.00001 NODE S 0.0000= 0.00001---------------

I NODE 4 0.0000 = 0.0000 1 NODE 3 0.0000 = 0.00001

I NODE 10 .0000= 0.0000 1 NODE 11 0.0000 = 0.0000 I

INODE 12 0.0000 = 0.0000 1 NODE 13 .0000= 0.00001

INODE 14 0.0000 = 0.0000 1 NODE 15 .0000 = 0.00001

.I.NODE.16. .0000= 0,0000 I NODE 17 0...........000 = 0.0000 I
I NODE 18 0.0000 = 0.0000 1 NODE T1 0.0000 = 0.00001

Ro ND 2 .0000 = .0000 1 RO E 22 00000 = 1.00001

I ROwE 25 0.0000 = 0.0000 Ro 2OD61 0.0000 = 0.00001

I ROwE 27 0.0000 = 0.0000 1 RO E 28 0.0000 = 0.00001

Ro 3OE18 0.0000 = 0.0000 1 RO E 32 0.0000 = 0.000)1

File: Formi 9/03/90 23:53:31 Page 1-6

CONSTRAINTS: OPER767 TERM PROJECT

iConstrainti Activity I RHS IConstrainti Activity I RHS I

I Row 41 .0000 = 1.0000 1 Row 42 0.0000 = 0.00001

IRow 23 0.0000 < 0.0000 1Row 24 0.0000 < 0.00001

I Row 45 .0000 = 0.0000 1 Row 46 0.0000 = 0.00001

I Row 47 0.0000 = 0.0000 I Row 48 0.0000 = 0.0000-------------

IRow 49 0.0000 = 0.0000 I Row 20 0.0000 = 0,00001I

-- -- -- -- -- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- ---124-- -



Row 51 0.0000 = 0.00001 Row 52 0.0000 = 0.0000 I--------------
I Row 53 0.0000 = 0.0000 1 Row 54 0.0000 = 0.00001I

Row 55 0.0000= 0.0000 Row 56 0.0000 = 0.0000 I---------------
IRow 57 0.0000 = 0.0000!1 Row 54 0.0000 = 0.0000 I

I Row 55 0.0000 = 0.0000!1 Row 560 0.0000 = 0.00001

I Row 63 0.0000 = 0.0000I1Row 64 0.0000 = 0.00001
....ow 65.. 0...000 .0000[Row 66 0.........000 .00001.....

I Row 67 0.0000 = 0.0000 1 Row 68 0.0000 = 0.00001

Row 69 0...0000 = 0............000IRw7 .0000 = 0..0000 I.....

I Flow 71 0.0000 = 0.0000 1 Row 72 0.0000 = 0.00001

I Row 73 0.0000 = 0.0000 I Row 74 0.0000 = 0.00001I

I Row 65 0.0000 = 000 o 6 000 0.00001

T oa Eror 0.00OO=000001Rw6 .C .00

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --125- --



Appendix D: Max Coverage (p- 2 )

..TITLE

MAXIMAL COVERAGE LP83 FORMULATION (p-2)

..OBJECTIVE MAXIMIZE

*source connectors

0OXSI +O0XS2 + 0OXS3

*state 1

+ 8 X1IO + 5 X111 + 4 X112

+ 3X210 +6 X211 + 9X212

+ 2 X310 + 7 X311 + 5 X312

*state 2

* 6 X413 + 2 X414 + 7 X415

* 9 X513 + 3 X514 + 6 X515

* 4 X613 + 6 X614 + 5 X615

*state 3

+ 4 X716 + 8 X717 + 9 X718

+ 6 X816 + 7 X817 + 9 X818

+ 3 X916 + 9 X917 + 7 X9l8

*interstate links

+ 0 X14 + 0 X25 + 0 X36

+ 0 X47 + 0 X58 + 0 X69

*sink connectors

+ 0 XIOT + 0 X11T + 0 X12T

+0 X13T +0 X14T +0 X15T

+0 X16T +0 X17T +0 X18T

*select Vp facilities
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+0p

..CONSTRAINTS

NODE S: XSI + XS2 + XS3 - p - 0

NODE l:XllO+Xlll+XI12+XI4-4XSI-0

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 - 0

NODE 3: X310 + X311 + X312 + X36 - 4 XS3 = 0

NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 - 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 = 0

NODE 7: X716 + X717 + X718 -3 X47 = 0

NODE 8: X816 + X817 + X818 -3 X58 = 0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE 10: XIOT - Xl0 - X210 - X310 = 0

NODE 11: XlIT-X111 -X211 -X311 =0

NODE 12: X12T - XI12 - X212 - X312 = 0

NODE 13: XI3T - X413 - X513 - X613 = 0

NODE 14: XI4T - X414 - X514 - X614 = 0

NODE 15: X15T - X415 - X515 - X615 = 0

NODE 16: X16T - X716 - X816 - X916 = 0

NODE 17: XI7T - X717 - X817 - X917 = 0

NODE 18: XI8T - X718 - X818 - X918 = 0
-------------------------------------------------------- *

* for the next constraint, coefficient of 'p' is (j*k)
* where
* j = number of states (months)
• k = number of demand locations (missions)

----------------------------------------------------

NODE T:-XIOT-XIIT-X12T
- X13T - X14T - X15T
- XI6T - XI7T - XI8T + 9 p = 0
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* select 'p' facilities

p-2

* source connector flows
XSl <- I
XS2 <- I
XS3 <- 1

* sink-connector flows
XIOT - p -0
XlIT-p-0
X12T - p -0
X13T - p -0
X14T - p - 0
X15T - p -0
X16T - p -0
XI7T - p - 0
XI8T - p - 0

* equi-distribution of flow at each location
X1IO-XIII -0
XIIO - X112 - 0
XIII -X112-0
XIIO-XSI -0
XIIO-XI4 =0

X210-X211 =0
X210 - X212 = 0
X211 - X212 = 0

X210-XS2 =0
X210-X25 =0

X310-X311 =0
X310 - X312 = 0
X311 - X312 = 0
X310-XS3 =0
X310-X36 -0

X413 - X414 = 0
X413 - X415 = 0
X414 - X415 = 0
X413-X47 =0
X14 - X47 =0

X513 - X514 = 0
X513 - X515 = 0
X514 - X515 = 0
X513-X58 =0
X25 - X58 = 0

X613 - X614 = 0
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X613 - X615 - 0
X614 - X615 - 0
X613-X69 =0
X36 - X69 - 0

X716 - X717 - 0
X716 - X718 = 0
X717 - X718 = 0
X716-X47 -0

X816 - X817 - 0
X816 - X818 - 0
X817 - X818 = 0
X816-X58 -0
X916 - X917 -0
X916 - X918 = 0
X917 - X918 = 0
X916-X69 -0

Statistics-
LP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
Variables: 46
Constraints: 75

3 LE, 72 EQ, 0 GE.
Non-zero LP elements: 198
Disk Space: OK bytes.
Page Space: 28K bytes.
Capacity: 15.7% used.
Estimated Time: 00:00:39

Iter 47
Solution Time: 00:00:03
*Mayhave*ALTERNATE SOLUTION

File: Form2 9/03/90 23:54:44 Page 1-1
SOLUTION (Maximized): 111.0000 OPERT7 TERM PROJECT -

I Variable I Activity I Cost IVariable I Activity I Cost

I XS1 1.0000 0.0000 1 XS2 1.0000 0.0000

I XS3 0.0000 0.0000 1 X110 1.0000 8.0000

I Xlll 1.0000 5.0000 1 X112 1.0000 4.0000

I X210 1.0000 3.0000 1 X211 1.0000 6.0000

I X212 1.0000 9.0000 1 X310 0.0000 2.0000

I X311 0.0000 7.0000 I X312 0.0000 6.00001

I X413 1.0000 6.0000 1 X414 1.0000 2.0000
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I X415 1.0000 7.00001I X513 1.0000 9.00001

I X514 1.0000 3.00001 X616 1.0000 8.0000 I

I X613 0.0000 4.00001I X614 0.0000 6.00001I

File: Form2 9/03/90 23:54:44 Page 1-2
SOLUTION (Maximized): 111.0000 OPER767 TERM PROJECT -

IVariable IActivity ICost IVariable IActivity ICost I

I X615 0.0000 5.00001I X716 1.0000 4.00001

I X717 1.0000 8.00001I X718 1.0000 9.00001

I X816 1.0000 6.00001I X817 1.0000 7.00001I

I X818 1.0000 9.00001I X916 0.0000 3.00001

1 X917 0.0000 9.00001I X918 0.0000 7.00001

I X14 1.0000 0.00001I X26 1.0000 0.0000 I

I X36 0.0000 0.00001I X47 1.0000 0.00001

I X58 1.0000 0.0000 I X69 0.0000 0.00001

I X1OT 2.0000 0.0000 I X11T 2.0000 0.0000-------------------

I X12T 2.0000 0.00001I X13T 2.0000 0.00001

File: Form2 9/03/90 23:54:44 Page 1-3
SOLUTION (Maximized): 111.0000 OPER767 TERM PROJECT -

IVariable I Activity I Cost I Variable I Activity ICost I
I X14T 2.0000 0.0000 I X15T 2.0000 0.0000-------------------

I X14T 2.0000 0.00001I X15T 2.0000 0.00001

I X18T 2.0000 0.00001I p 2.0000 0.00001

File: Form2 9/03/90 23:54:44 Page 1-4
CONSTRAINTS:, OPER767 TERM PROJECT -

IConstrainti Activity I RHS IConstrainti Activity I RHS I

---NODE---S-0.0000------0.0000---NODE--1 --0.0000------0.0000 -

I NODE 2 0.0000 = 0.0000 1NODE 1 0.0000 = 0.00001

I NODE 4 0.0000 = 0.0000 1 NODE 5 0.0000 = 0.00001I
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INODE 6 0.0000 = 0.0000 1 NODE 7 0.0000 = 0.00001

.I NODES 0......000 .00001 NODE 9 0.........000 .00001.....

I NODE 10 0.0000 = 0.0000 1 NODE 11 0.0000 = 000001

.. NODE 12 .0000= 0.. .0000 I NODE 13 0.........000 = 0.0000 .

I NODE 14 0.0000 = 0.0000 1 NODE 15 0.0000 = 0.00001

I NODE 18 0..0000 = 0..................0000 NOD 17 .000= 0.000

I NODE 18 0.0000 = 0.0000 1 NODE T3 0.0000 = 0.00001

RI 2OE14 2.0000 = 2.0000 1 RO E 22 .0000 =1.00001

Ro 25D 1 0.0000 = 0.0000 Ro 26D 1 0.0000 = 0.00001

I ROwE 27 0.000 = 0.0000 Ro 28E 0.0000 = 0.00001

I owsrit 39 ivt 0.00 = H 0.0000 it Acivt Ro 40 0.00 000

I Row 41 0.0000 = 0.0000 I Row 42 0.0000 < 0.000I

IRow 23 0.0000 < 0.0000 1Row 24 0.0000 < 0.00001

I Row 46 0.0000 = 0.0000 I Row 46 0.0000 = 0.0000-------------

I Row 47 0.0000 = 0.0000 I Row 48 0.0000 = 0.00001

Row 49 0.0000 = 0.0000 I Row 60 0.0000 = 0.0000--------------

IRow 27 0.0000 = 0.0000 1 Row 28 0.0000 = 0.00001

I Row 53 0.0000 = 0.0000 I Row 54 0.0000 = 0.00001I

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --131- --



IRaw 55 0.0000 = u.0L30 IRow 56 0.0000 = 0.00001I

Row 57 0.......................0000= 0.000I Ro 58 .000= 0000

I Row 59 0.0000 = 0.0000 1 Row 50 0.0000 = 0.00001

File: Form2 9/03/90 23:54:44 Page 1-7
CONSTRAINTS: OPER767 TERM PROJECT -

lConstrainti Activity I RHS lConstraintl Activity I RHS I
---Row--61 0.0000=-----0.00001-- Row 62 ----0.0000= --- 0.0000 -

I Row 63 0.0000 = 0.0000O1Row 62 0.0000 = 0.00001

.. Row 65. .0000 = 0.................0000 Row 6 0.000= 00000

I Row 63 0.0000 = 0.00001I Row 68 0.0000 = 0.00001

I Row 65 0.0000 = 0.0000 1 Row 70 0.0000 = 0.00001

I--ow--71- 0.0000= 0---.OOOOI---o ---72 0.0000=- 0.000-01----

I Row 7 0.0000 = 0.0000 1 Row 64 0.0000 = 0.00001I

I Row 75 0.0000= 0.001Rw7 000= 0.00001

Total Error: 0.000000
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Appendix E: MICROSOLVE (p=l)

ARC PARAMETERS AND FLOWS
SOLUTION COST - -69.99609

ARCS THAT START AT 1
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 1 0 1 -8 1 1
11 2 0 1 -5 1 0
12 3 0 1 -4 1 0
4 4 0 1 0 4 .25

ARCS THAT START AT 2
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 5 0 1 .3 1 0
11 6 0 1 -6 1 0
12 7 0 1 -9 1 1
5 8 0 1 0 4 .4167

ARCS THAT START AT 3
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 9 0 1 -2 1 0
11 10 0 1 -7 1 1
12 11 0 1 -5 1 0
6 12 0 1 0 4 .3333

ARCS THAT START AT 4
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

!3 13 0 1 -6 1 0
14 14 0 1 -2 1 0
15 15 0 1 -7 1 1
7 16 0 1 0 3 0

ARCS THAT START AT 5
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

--- -- .....--.... .- ...... ..... ..... -----

13 17 0 1 -9 1 1
14 18 0 1 -3 1 0
15 19 0 1 -6 1 0
8 20 0 1 0 3 .6667
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ARCS THAT START AT 6
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 21 0 1 -4 1 0
14 22 0 1 -6 1 1
15 23 0 1 -5 1 0
9 24 0 1 0 3 .3333

ARCS THAT START AT 7
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 25 0 1 -4 1 0
17 26 0 1 -8 1 0
18 27 0 1 -9 1 0

ARCS THAT START AT 8
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 28 0 1 -6 1 1
17 29 0 1 -7 1 0
18 30 0 1 -9 1 1

ARCS THAT START AT 9
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 31 0 1 -3 1 0
17 32 0 1 -9 1 1
18 33 0 1 -7 1 0

NO ARCS START AT NODE 10

NO ARCS START AT NODE I I

NO ARCS START AT NODE 12

NO ARCS START AT NODE 13

NO ARCS START AT NODE 14

NO ARCS START AT NODE 15

NO ARCS START AT NODE 16

NO ARCS START AT NODE 17

NO ARCS START AT NODE 18
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ARCS THAT START AT 19
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

1 34 0 1 0 4 .3125
2 35 0 1 0 4 .3541667
3 36 0 1 0 4 .3333333
SLACK 37 0 1 99999 1 3.9 1E-08
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Appendix F: MICROSOLVE (p-2)

ARC PARAMETERS AND FLOWS
SOLUTION COST = -119.9682

ARCS THAT START AT I
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 1 0 1 -8 1 1
11 2 0 1 -5 1 0
12 3 0 1 -4 1 0
4 4 0 1 0 4 .75

ARCS THAT START AT 2
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 5 0 1 -3 1 .9999997
11 6 0 1 -6 1 1
12 7 0 1 -9 1 1
5 8 0 1 0 4 .91667

ARCS THAT START AT 3
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 9 0 1 -2 1 0
11 10 0 1 -7 1 1
12 11 0 1 -5 1 1
6 12 0 1 0 4 .333334

ARCS THAT START AT 4
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 13 0 1 -6 1 1
14 14 0 1 -2 1 0
15 15 0 1 -7 1 1
7 16 0 1 0 3 1

ARCS THAT START AT 5
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

------- ----- ------... .. ° . ..... --- - - --

13 17 0 1 -9 1 1
14 18 0 1 -3 1 1
15 19 0 1 -6 1 1
8 20 0 1 0 3 .666667
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ARCS THAT START AT 6
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 21 0 1 -4 1 0
14 22 0 1 -6 1 1
15 23 0 1 -5 1 0
9 24 0 1 0 3 .66667

ARCS THAT START AT 7
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 25 0 1 -4 1 .99999
17 26 0 1 -8 1 1
18 27 0 1 -9 1 1

ARCS THAT START AT 8
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 28 0 1 -6 1 1
17 29 0 1 -7 1 0
18 30 0 1 -9 1 1

ARCS THAT START AT 9
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 31 0 1 -3 1 0
17 32 0 1 -9 1 1
18 33 0 1 -7 1 0

NO ARCS START AT NODE 10

NO ARCS START AT NODE I I

NO ARCS START AT NODE 12

NO ARCS START AT NODE 13

NO ARCS START AT NODE 14

NO ARCS START AT NODE 15

NO ARCS START AT NODE 16

NO ARCS START AT NODE 17

NO ARCS START AT NODE 18

137



ARCS THAT START AT 19
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

1 34 0 1 0 4 .4375
2 35 0 1 0 4 .9791666
3 36 0 1 0 4 .5833333
SLACK 37 0 1 99999 1 0
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Appendix G:- Set Covering MIP83 (d=2)

..TITLE

SET COVERING MIP83 FORMULATION (d-2)

..OBJECTIVE MINIMIZE

*source connectors

1000 1[XSI] + 1000 [[XS2] + 1000 t[XS3]]

*'state 1

+ 0 [[XI 10]] + 0 [[Xlii]] + 0 [[XI 12]]

+ 0 [[X210]] + 0 [[X21 1]] + 0 [[X212]]

+ 0 [[X3 10]] + 0 [[X311I]] + 0 [[X312]]

*'state 2

+ 0 [[X413]] + 0 [[X414)] + 0 [[X415]]

+ 0 [[X513]] + 0 [[X514]] + 0 [[X515]]

+ 0 [[X613]] + 0 [[X614]] + 0 [[X615]]

*state 3

+ 0 [[X716]] + 0 [[X7 17]] + 0 [X*718]]

+ 0 [[X816]] + 0 [[X817]] + 0 [[X8]8]]

+ 0 [[X916]] + 0 [[X917]] + 0 [[X918]]

*interstate links

* 0 [[X 14]] + 0 [[X25]] + 0 [[X36]]

* 0 [[X47]] + 0 [[X58]] + 0 [[X6911

*demand-sink connectors

+ 0 [XIOT] + 0 [XI IT] + 0 [X12T]

+ 0 [X1I3'r] + 0 [X 1 4T] + 0 [X I 5T]

+0[X 16T] + 0 [X 17T] + 0 [X1I8T]

*excess-sink connectors
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- 1 [X1IOTE] - 1 [X1I1ITEI - 1 [XI12TE]

- 1 [X1I3TE] - 1 [XI14TEI - I [X1I5TE]

- 1 [XI6TE] - 1 [X17TE] - I [X18TEI

-.BOUNDS

*demand for mission I (nodes 10, 13, 16)

M1OT >= 2

X13T >= 2

X16T >= 2

*demand for mission 2 (nodes 11, 14, 17)

XI IT>= 2

X14T >= 2

X17T >= 2

*demand for mission 3 (nodes 12, 15, 18)

X12T >= 2

X15T >= 2

X18T >= 2

.. ONSTRAINTS

NODE S: XS1 +, XS2 + XS3 >= 1

NODE 1: X11O+ XIII +X112 +X14 -4 XSI=O0

NODE 2: X210 + X211 +' X212 + X25 - 4 XS2 = 0

NODE 3: X310 +X311 + X312 +X36 - 4XS3 =0

NODE 4:, X413 + X414 + X415 + X47 - 4 X 14 =0
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NODE 5: X513 + X514 + X515 + X58 -4 X25 0

NODE 6: X613 + X614 + X615 + X69- 4 X36 0

NODE 7: X716 + X717 + X718 -3 X47 = 0

NODE 8: X816 + X817 + X818 - 3 X58 = 0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE 10: XIOT + XIOTE- 8 Xl10- 3 X210- 2 X310 = 0

NODE ll:XllT+XllTE-5 Xll-6X211-7X311 =0

NODE 12: X12T + X12TE- 4 XI12- 9 X212- 5 X312 = 0

NODE 13: X13T + X13TE - 6 X413 - 9 X513 - 4 X613 = 0

NODE 14: XI4T + XI4TE- 2 X414 - 3 X514 - 6 X614 = 0

NODE 15: X15T + X15TE- 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + X16TE- 4 X716 - 6 X816 - 3 X916 = 0

NODE 17: X17T + X17TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: XI8T + X18TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T:-XIOT-XIIT-X2T
- X13T - X14T - X15T
- X16T - X17T - XIST <= 0

NODE TE: - XIOTE - XIITE - XI2TE
- X13TE - X14TE - X15TE
- X16TE - X17TE - X18TE <= 0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MINIMIZED.
MIP Strategy: I
Variables: 54
Integer: 54

Constraints: 21
2 LE, 18 EQ, I GE.

Non-zero LP elements: 108
Disk Space: OK bytes.
Page Space: 9K bytes.
Capacity: 8.5% used.
Estimated Time: 00:00:15

Iter 46
Solution Time: 00:00:01
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UNIQUE SOLUTION

Optimal Solution: 899.5714 Max Node Depth: 580 Limit: NONE

Solution: 960.0000 Iter: 71 Nodes: 2 Iteration Time: 00:00:11

INTEGER SOLUTION

File: SETCOV 8/25/90 16:43:02 Page 1-1
SOLUTION (Minimized): 960.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity I Cost I

I XS1 0.0000 1,000.0000 XS2 1.0000 1,000.0000-----------------

I XSS 0.0000 1,000.0000 1 X110 0.0000 100.0000 1

I Xlii 0.0000 100.0000 1 X110 0.0000 0.0000 I

I X10 1.0000 0.00001 X112 1.0000 0.00001I

I X210 1.0000 0.00001 X211 0.0000 0.00001I

IX212 0.0000 0.00001I X310 0.0000 0.00001I

I X311 0.0000 0.00001I X312 0.0000 0.00001

IX415 0.0000 0.00001 X414 1.0000 0.00001I

---- X51----1.0000-----0.0000 ----X515 ----1.0000 -0.0000 -----

I X425 0.0000 0.00001 X513 0.0000 0.00001

I X614 0.0000 0.00001 X515 0.0000 0.00001

I X613 0.0000 0.00001 X614 0.0000 0.00001

File: 1.0000 0000/25/9 1.000 02 0.0000-

SOUTO (Minim1.0000 0.000 ~ OPE67 0.000 0.0000 ETCVEIN OR

I Varabl 0.00 0.0000ICst I aal I Actvit 0.00 0.000 I
X14 0.0000 0.0000 X25 1.0000 0.0000----------------------

I X616 0.0000 0.00001 X7 0.0000 0.00001

I X717 1.0000 0.00001 X718 0.0000 0.00001

I X16T .0000 0.00001j X817 .0000 0.00001

1X18 .0000 0.0000, 1 X913 .0000 0.00001

-- -- -- -- -- -- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- ---14 2-- -



File: SETCOV 8/25/g0 16:43:02 Page 1-3

SOLUTION (Minimized),. 980.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost I Variable I Activity ICostI

--- X-1--T -- 2.0000----0.0000----j --X1 --T --2.0000 0.0-0001 -----

I X14T 2.0000 0.0000 1 X17T 2.0000 0.00001I

I X16T 2.0000 0.00001 X1OTE 2.0000 -0.0000 I
-----X1 -----T-------4.0000----------1.0000 X12TE .000 -1.000

IX18TE 2.0000 -0.0000 1 X1TE 1.0000 -1.00001I

-----X15TE ----------4.0000------- --1.00001 X6TE 4.000 -1.000

IX11TE 5.0000 -1.0000 1 X12TE 7.0000 -1.00001

I NODE S .0000 -1.00001 NODE 1 1.0000= -1.00001

I NODE 4 .0D000 0.0000 NOD16E 4 .0000 -10.00001

I NODE 8 .0000 -10.00001 NODE 9 7.0000= 0.0000 I

File: SETCOV 8/25/90 16:43:02 Page 1-5
CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstrainti Activity IRHS IConstraintl Activity I RHS I

I NODE TE 0.00=-.00OE30.0000 = 0.00001

T OalError: 0= .00 ND 0.0000=000001

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --143- --



Appendix H: Set Covering MI P83 (d-4)

..TITLE

SET COVERING M1P83 FORMULATION (d-4)

-.OBJECTIVE MINIMIZE

*source connectors

1000 [[XS I] + 1000 [[XS2] + 1000 [[XS3]J

*state 1

+ 0 [[XlIO]] + 0 [[Xll1]] + 0 [[Xll2]]

* 0 [[X2 10]] + 0 [[X21 Il + 0 [[X212]]

* 0 [[X3 10]] + 0 [[X31111l + 0 [[X312]]

*state 2

+ 0 [[X413]] + 0 [[X414]] + 0 [[X415]]

+ 0 [[X513]] + 0 [[X514]] + 0 [[X5 1511

+ 0 [[X613]] +. 0 [[X614]] + 0 [[X615]]

*state 3

+ 0 [[X716]] + 0 [[X717]] + 0 [[X71811

+ 0 [[X816]] + 0 [[X817]] + 0 [(X818]]

+ 0 [[X916]] + 0 [[X917]] + 0 [[X918]]

*interstate links

+ 0 [[X14]] + 0 [[X25]] + 0 [[X36]]

+ 0 [[X47]] + 0 [[X58]] + 0 [[X69]]

*demand-sink connectors

+0 [XI0T] +0 [XI1T] +0 [XI2T]

+ 0 [X I3T] + 0 [XI14T] + 0 [X I5T]

+ 0 [X 16T] + 0 [XI17T] + 0 [X I8T]

*excess-sink connectors
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. I [X IOTE] - I [X I1ITE] - I [X 12TE]

- I [Xl3TE] - 1 [X14TE] - 1 [X15TE]

- 1 [X16TE] - 1 [X17TE] - 1 [Xl8TE]

-.BOUNDS

*demand for mission I (nodes 10, 13, 16)

MIOT >-4

X13T >- 4

X16T >- 4

*demand for mission 2 (nodes 11, 14, 17)

MIT >- 4

X14T >- 4

X17T >= 4

*demand for mission 3 (nodes 12, 15, 18)

X12T >= 4

X15T >= 4

X18T >= 4

X.ONSTRAINTS

NODE S: XSI + XS2 + XS3 >= 1

NODE I:XIIO+XI11+X112+X14-4XSI=O

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 = 0

NODE 3: X310 +X311 + X312 +X36 - 4 XS3 = 0

NODE 4: X413 + X414 + X415 + X47 - 4 X 14 =0
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NODE 5: X513 + X514 + X515 + X58 - 4 X25 = 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 - 0

NODE 7: X716 + X717 + X718 -3 X47 0

NODE 8: X816 + X817 + X818 - 3 X58 - 0

NODE 9: X916 + X917 + X918 - 3 X69 - 0

NODE 10: X1OT + XIOTE- 8 XI10- 3 X210- 2 X310 - 0

NODE II:XIIT+XIITE-5XIlI-6X211-7X311 -0

NODE 12: XI2T + X12TE- 4 X112- 9 X212- 5 X312 - 0

NODE 13: XI3T + XI3TE- 6 X413 - 9 X513 - 4 X613 = 0

NODE 14: X14T + X14TE - 2 X414 - 3 X514 - 6 X614 = 0

NODE 15: X15T + X15TE - 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + X16TE- 4 X716 - 6 X816 - 3 X916 = 0

NODE 17: X17T + XI7TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: X18T + X18TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T:-XIOT-XIIT-X2T
- X13T - X14T - XI5T
- XI6T - X17T - XI8T <= 0

NODE TE: - XIOTE - XIlTE - X12TE
- X13TE - X14TE - X15TE
- X16TE - X17TE - X18TE <= 0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MINIMIZED.
MIP Strategy: 1
Variables: 54
Integer: 54

Constraints: 21
2 LE, 18 EQ, I GE.

Non-zero LP elements: 108
Disk Space: OK bytes.
Page Space: 9K bytes.
Capacity: 8.5% used.
Estimated Time: 00:00:15
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Iter 48
Solution Time: 00:00:02
UNIQUE SOLUTION

Optimal Solution: 919.2540 Max Node Dcpth: 580 Limit: NONE

Solution: 1,925.0000 Iter: 103 Nodes: 8 Iteration Time: 00:00:17

INTEGER SOLUTION

File: Setco4 9/04/90 00:05:48 Page 1-1
SOLUTION (Minimnized): 1,925.0000 OPER767 TERM PROJECT.- SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

I XSl 1.0000 1,000.0000 1 XS2 1.0000 1,000.0000 1

I XSS 0.0000 1,000.0000 1 X110 1.0000 0.00001

-I Xl-ii---1.0000-----0.0000 X1------2 1.0000 --- 0.0000 ----

IX11 1.0000 0.00001 X112 1.0000 0.00001

I X210 1.0000 0.0000 I X211 1.0000 0.0000

IX212 1.0000 0.00001j X510 1.0000 0.0000I

X514 1.0000 0.0000 X515 1.0000 0.0000---------------------

I X311 0.0000 0.00001 X312 0.0000 0.00001

I X413 0.0000 0.00001 X414 1.0000 0.00001I

IX415 1.0000 0.00001 X513 1.0000 0.00001

I X514 0.0000 0.00001 X517 1.0000 0.00001

I X583 1.0000 0.00001 X614 0.0000 0.00001

SOLUTO (M.0000d) 0,.0000 OPER76 TE000 0.0000T - EI OEIGFR

-- -- -- -- -- -- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- ---147-- -



IX12T 4.0000 0,00001I X13T 4.0000 0.00001I

File: Setco4 9/04/90 00:05:48 Page 1-S
SOLUTION (Minimnized): 1,925.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable I Activity ICost I
X14T 4.0000 0.00001 X16T 4.0000 0.00001--------------------

I X14T 4.0000 0.00001 X17T 4.0000 0.00001

IX18T 4.0000 0.00001 X17TE 4.0000 -. 00001

IX1ST 1.0000 -. 0000 1 X1TE 7.0000 -1.00001

X15TE 9.0000 ----------------------1.0000 X6TE .0000 -1.000

IX11TE 1.0000 -1.0000 1X12TE 1.0000 -1.00001

I NODE S 12.0000 -1.0000 NOD14E 1,00000 -10.00001

I NODE 4 .0000 = 0.0000 NOD16E 6 .0000 -10.00001

I NODE 10 1.0000 -10.0000 NOD18E 1140.0000 -10.00001I

File: Setco4 9/04/90 00:05:48 Page 1-5

CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstrainti Activity IRHS lConstraintl Activity I RHS I

INODE TE -750 .00 OD .0000 = 0.00001

T OalError: 0= .00 ND 0.0000=000001

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --148- --



Appendix I.- Set Covering (d-6)

..TITLE

SET COVERING MIP83 FORMULATION (d-6)

_.OBJECTIVE MINIMIZE

*source connectors

1000 [[XSI] + 1000 ([XS2] + 1000 [[XS3]]

*state I

+ 0 [[Xl 10]] + 0 [[XIi]] + 0 [[XI 12]]

+ 0 [[X210]] + 0 [[X21 1]] + 0 [(X212]]

+ 0 [[X310]] + 0 [[X31 1]] + 0 [[X312]]

*state 2

+ 0 [[X413]] + 0 [[X414]] + 0 [[X415]]

+ 0 [[X513]] + 0 [[X514]] + 0 [[X515]]

+ 0 [[X613]] + 0 [[X614]] + 0 [[X615])

*state 3

* 0 [[X716]] + 0 [[X717]] + 0 [[X718]]

* 0 [[X8161] + 0 [[X817]] + 0 [[X818]]

* 0 [[X916]] + 0 [[X917]] + 0 [[X918]]

*interstate links

+ 0 [[X 1411 + 0 [[X25]] + 0 [[X36]]

+ 0 [[X47]] + 0 [[X58]] + 0 [[X69]]

*demand-sink connectors

+0 [XIOT] +0 [Xl1T] +0 [Xl2T]

+ 0 fX I3TJ + 0 [Xl14T] + 0 [X I5T]

+ 0 [XI16T] + 0 [Xl17T] + 0 [X I8T]
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*excess..sink connectors

- I [X IOTE] - 1 [X1I1ITEJ - I [X I2TE]

- 1 [X1I3TEJ - 1 [X I4TE] - 1 [X I5TEJ

- 1 [X 16TE] - 1 [X 17TEJ - I [XI8STE]

..BOUNDS

*demand for mission I (nodes 10, 13, 16)

MIOT >- 6

X13T >- 6

X16T >- 6

*demand for mission 2 (nodes 11, 14, 17)

XI IT>- 6

X14T >- 6

X17T >= 6

*demand for mission 3 (nodes 12, 15, 18)

X12T >= 6

X15T >= 6

X18T >= 6

.. ONSTRAINTS

NODE S: XSI + XS2 + XS3 >= 1

NODE :XIIO+XIII +X112+ X14-4 XS1=0

NODE 2: X210 + X211 + X212 + X25 -4 XS2 = 0

NODE 3: X310 +X311 4X312 +X36 -4 XS3= 0
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NODE 4: X413 + X414 + X415 + X47 - 4 X14 = 0

NODE 5: X513 + X514 + X515 + X58 -4 X25 . 0

NODE 6: X613 + X614 + X615 + X69-4 X36 -0

NODE 7: X716 + X717 + X718 - 3 X47 = 0

NODE 8: X816 + X817 + X818 -3 X58 -0

NODE 9: X916 + X917 + X918 - 3 X69 - 0

NODE 10: XIOT + XIOTE - 8 X110 - 3 X210 - 2 X310 = 0

NODE II:XIIT+XIITE -5 XIi -6X211-7 X311 -0

NODE 12: X12T + XI2TE - 4 X112 - 9 X212 - 5 X312 = 0

NODE 13: X13T + X13TE - 6 X413 - 9 X513 - 4 X613 = 0

NODE 14: XI4T + XI4TE - 2 X414 - 3 X514 - 6 X614 = 0

NODE 15: XI5T + XI5TE - 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: XI6T + XI6TE - 4 X716 - 6 X816 - 3 X916 = 0

NODE 17: XI7T + XI7TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: XI8T + X18TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T:-XIOT-XIIT-XI2T
- X13T - XI4T - XI5T
- X16T - XI7T - XI8T <= 0

NODE TE: - XIOTE - XI 1TE - XI2TE
- XI3TE - XI4TE - XI5TE
- XI6TE - XI7TE - XI8TE <= 0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory., OK bytes.
Objective Function is MINIMIZED.
MIP Strategy: 1
Variables: 54
Integer: 54

Constraints: 21
2 LE, 18 EQ, I GE.

Non-zero LP elements: 108
Disk Space: OK bytes.
Page Space: 9K bytes.
Capacity: 8.5% used.
Estimated Time: 00:00:15
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Iter 39
Solution Time: 00:00:02
ALTERNATE SOLUTIONS

Optimal Solution: 946.5714 Max Node Depth: 580 Limit: NONE

Solution: 1,953.0000 Iter: 57 Nodes: 3 Iteration Time: 00:00:10

INTEGEIF SOLUTION

File: Setco8 9/04/go 00:07:12 Page 1-1
SOLUTION (Minimized): 1,953.0000 0PER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

I XS1 1.0000 1,000.0000 X52 0.0000 1,000.0000 I----------------
I XSS 1.0000 1,000.0000 1 O 1S .0000 100.0000 1

1 Xlii 1.0000 100.0000 1X110 1.0000 0.0000 I

I XI11 1.0000 0.00001 X112 1.0000 0.00001I

I X210 1.0000 0.00001I X211 0.0000 0.00001

I X212 0.0000 0.00001 X310 0.0000 0.00001

I X311 1.0000 0.00001 X312 1.0000 0.00001

I X413 1.0000 0.00001 X414 1.0000 0.00001

1 X418 0.0000 0.00001 X613 0.0000 0.00001

I X614 1.0000 0.00001 X515 0.0000 0.00001

I X63 1.0000 0.00001I X64 1.0000 0.00001I

S OTO (M.0000d): 0,.0000 OPER7600 0.0000CT-ST OERN FRU

-- -- -- -- -- -- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- ---15 2-- -



I X12T 6.0000 0.00001j X1ST 6.0000 0.00001

File: Setc06 9/04/90 00:07:12 Page 1-3
SOLUTION (Minimized): 1,953.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable I Activity ICost I

---- X1-----6.0000-- 0.0000------X1 ---T--6.0000 ----0.0000 ---

I X14T 6.0000 0.00001 X16T 6.0000 0.00001

I X16T 6.0000 0.0000 1 X17TE .0000 -0.00001
X11TE 6.0000 ----- -1.0000 I X12TE 3.0000 ------ -1.0000-------

I X13TE 6.0000 -. 0000 1X1TE .0000 -1.00001

--I X1 --5TE 6.0000 -----------------1.0000 I 1TE 1.000 -1.000

I X11TE 1.0000 -1.0000 1X12TE 1.0000 -1.00001

I N13E S 4.0000> 1.0000 NOD14E 1 2.0000 -10.00001

X1NODE 60.0000 = 0.0000 1 NODE 1 .0000 -10.00001

X1NODE 10 1.0000 = -0.0000 1 NODE 110.0000 -10.00001

-I-NODE 12 0.0000---- = 0.0000- I -- NODE ---13 -0.0000 ---= --0.0000 -

I NODE 16 0.0000 > 0.0000 1 NODE 17 0.0000 = 0.00001I

I NODE 18 0.0000 = 0.0000 1NODE 3 -5.0000 = 0.00001

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --'5 3- --



File: SetcoO 9/04/90 00:07:12 Page 1-5

CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConhtraintl Activity I RHS IConhtrainti Activity I RHS I

I NODE TE -47.0000 < 0.0000 1

Total Error: 0.000000
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Appendix J: Set Covering LP83 (d-2)

..TITLE

SET COVERING LP83 FORMULATION (d=2)

..OBJECTIVE MINIMIZE

*source connectors

1000 XSI + 1000 XS2 + 1000 XS3

*state 1

+0XI10+0X111 +0X112

+ 0 X210 + 0 X211 + 0X212

+0X310+0X311 +0X312

*state 2

+ 0 X413 + 0 X414 + 0 X415

+ 0 X513 + 0 X514 + 0 X515

+ 0 X613 + 0 X614 + 0 X615

*state 3

+ 0 X716 + 0 X717 + 0 X718

+ 0 X816 + 0 X817 + 0 X818

+ 0 X916 + 0 X917 + 0 X918

*interstate links

+ 0 X14 + 0 X25 + 0 X36

+ 0 X47 + 0 X58 + 0 X69

*demand-sink connectors

+0 XIOT +0 X11T +0 X12T

+0 X13T +0 X14T +0 XI5T

+0 XI6T +0 XI7T +0 XI8T
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*excess-sink connectors

-1 XIOTE - I XIITE -1 XI2TE

- 1 X13TE - 1 X14TE - 1 X15TE

- I X16TE - I XI7TE - 1 X18TE

..BOUNDS

*demand for mission I (nodes 10, 13, 16)

XOT >- 2

X13T >= 2

XI6T >- 2

*demand for mission 2 (nodes 11, 14, 17)

XI IT >= 2

XI4T >= 2

X17T >= 2

*demand for mission 3 (nodes 12, 15, 18)

X12T >= 2

X15T >- 2

XIST >= 2

..CONSTRAINTS

NODE S: XSI + XS2 + XS3 >= 1

NODE l:XlI0+Xlll +XI12+XI4-4XSI =0

NODE 2:X210 + X211 + X212 + X25 - 4 XS2 = 0

NODE 3: X310+ X311 + X312 + X36 -4 XS3 =0
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NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 = 0

NODE 6: X613 + X614 + X615 + X69- 4 X36 = 0

NODE 7: X716 + X717 + X718 - 3 X47 = 0

NODE 8: X816 + X817 + X818 -3 X58 = 0

NODE 9: X916 + X917 + X918 -3 X69 = 0

NODE 10: XOT + XIOTE - 8 Xl 10- 3 X210 - 2 X310 = 0

NODE l:XI1T+XIITE-5XIII-6X211 -7X311=0

NODE 12: X12T + XI2TE - 4 XI12 - 9 X212 - 5 X312 = 0

NODE 13: X13T + XI3TE- 6 X413- 9 X513 - 4 X613 = 0

NODE 14: X14T + X14TE- 2 X414- 3 X514 - 6 X614 = 0

NODE 15: XI5T + X15TE - 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + X16TE- 4 X716 - 6 X816- 3 X916 = 0

NODE 17: XI7T + X17TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: XI8T + X18TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T:-XIOT-XIIT-XI2T
- X13T - X14T - X15T
- XI6T - X17T - X18T <= 0

NODE TE: - XOTE - XI ITE - X12TE
- X13TE - XI4TE - X15TE
- XI6TE - XI7TE - XI8TE <= 0

* source connector flows
XSl <= 1
XS2 <= 1
XS3 <= I

* equi-distribution of flow at each location
XI1O-XIII =0
XI10 - X112 = 0
XIII -XI12=0
XII0-XSI =0
XIIO-XI4 =0

X210 - X211 = 0
X210 - X212 = 0
X211 - X212 = 0
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X210- XS2 - 0
X210-X25 =0

X310-X311 -0
X310 - X312 - 0
X311 - X312 - 0
X310-XS3 =0
X310 - X36 - 0

X413 - X414 - 0
X413 - X415 - 0
X414 - X415 - 0
X413 - X47 =0
X14 - X47 =0

X513 - X514 = 0
X513 - X515 = 0
X514 - X515 = 0
X513 - X58 =0
X25 - X58 = 0

X613 - X614 - 0
X613 - X615 = 0
X614 - X615 = 0
X613-X69 =0
X36 - X69 = 0

X716 - X717 = 0
X716 - X718 = 0
X717 - X718 = 0
X716- X47 =0

X816 - X817 = 0
X816 - X818 = 0
X817 - X818 = 0
X816 - X58 -0

X916 - X917 = 0
X916 - X918 = 0
X917 - X918 = 0
X916-X69 =0

Statistics-
LP83 Version 5.00a
Machine memory" 256K bytes.
Pagable mcmory: OK bytes.
Objective Function is MINIMIZED.
Variables: 54
Constraints: 66

5 LE, 60 EQ, I GE.
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Non-zero LP elements: 195
Disk Space: OK bytes.
Page Space: 29K bytes.
Capacity: 15.4% used.
Estimated Time: 00:00:33

Iter 48
Solution Time: 00:00:02
*Mayhave*ALTERNATE SOLUTION

File: Setco2 9/03/90 23:55:51 Page 1-1
SOLUTION (Minimised): 960.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

I XS1 0.0000 1,000.0000 I XS2 1.0000 1,000.00, I

I XS3 0.0000 1,000.0000 I X-------------iO--0.0000 ----0.0000--

I Xlii 0.0000 100.0000 1 X110 0.0000 0.0000 I

I X11i 0.0000 0.00001I X112 0.0000 0.00001

I X41S 0.0000 0.0000 I X414 0.0000 0.0000-------------------

I X210 0.0000 0.0000 1 X211 1.0000 0.00001

I X212 1.0000 0.0000 1 X310 1.0000 0.0000 I

I X311 0.0000 0.00001I X612 0.0000 0.00001

I X415 0.0000 0.00001I X414 0.0000 0.00001

I X415 1.0000 0.00001I X813 1.0000 0.0000 I

I X614 0.0000 0.0000 I X215 1.0000 0.0000 I
I X36 0.0000 0.0000 I X47 0.0000 0.0000 I-------------------
I X613 1.0000 0.00001I X614 0.0000 0.00001

SOTO 2.0000xd): 90.0000 OPR6 TERM 2 R0000 -0 ETC0000GFOMU

-- -- -- -- -- - -- -- -- -- -- - -- -- -- -- - -- -- -- -- -- - ---15 9-- -



I X12T 2.0000 0.00001 X13T 2.0000 0.00001I

File: Setco2l 9/03/90 23:55:51 Page 1-3
SOLUTION (Minimized): 960.0000 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

--- X----T -- 2.0000----0.0000 ----X15 ----- 2.0000 --- 0.0000 ----I
I X14T 2.0000 0.00001 X17T 2.0000 0.00001I

I X16T 2.0000 0.00001I X17TE .0000 -0.00001

I XIBTE .0000 -10000 I X1TE 1.0000 -1.00001

I X15TE 4.0000 ---------------------1.0000 X16TE .0000 -. 0000

I X11TE 5.0000 -1.0000 I X12TE 7.0000 -1.00001I

NOD13E S 7.0000> -1.0000 NOD14E 1 1.0000 = 0.00001

I NODE 4 4.0000 = 0.0000 1 NODE 4 .0000 = 0.00001

I NODE 60.0000 -10.0000 NOD19E 70.0000 = 0.00001
---NODE--8--0.0000---=-0.0000------NODE --9--0.0000 -= --0.0000 ---I

Intrit NODE it 14 0.000 = ~ ntrt 0.0ivi0 I NODE 15 000I000

I NODE 16 0.0000 > 0.0000 1NODE 17 0.0000 = 0.00001

I NODE 18 0.0000 = 0.0000 I NODE T -1.0000 = 0.00001

Ile NOEo 9/39 23:55:5 P=g 0.0011-50.00= .00

I NODE T8 0.0000 = 0.0000 I OwE 22 0.0000 = .00001

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --160- --



I Row 23 1.0000 < 1.0000O1Row 24 0.0000 < 1.00001
---ow--25--0.0000=----0.O---OI--ow 26 ---0.0000=--- 0.00001 --

I Row 25 0.0000 = 0.0001Row 28 0.0000 = 0.00001

I--ow--29 0.0000= O.OO---00-I---ow --30 --0.0000=-- 0.OOO-----

I Row 27 0.0000 = 0.O001Row 28 0.0000 = 0.00001

I--ow--33--0.0000=--- 0.---00I--ow --34 --0.0000= 0.00001-----

IRow 35 0.0000 = 0.0000 1 Row 36 0.0000 = 0.00001

I--ow--S---0.0000=----0.OO--0l--ow --38 --0.0000=-- 0.0000-!--

I Row 39 0.0000 = 0.0000 1Row 40 0.0000 = 0.00001

IRow 41 0.0000 = 0.0000 1 Row 4 0.0000 = 0.00001
I Row 43 0.0000 0.0000 Row 44 0.0000 = 0.0000---------------

IRow 45 0.0000 = 0.0000 1 Row 46 0.0000 = 0.00001
I Row 47 0.0000 = 0.0000 Row 48 0.0000 = 0.0000 I-------------
I Row 49 0.0000 = 0.0000 1Row 50 0.0000 = 0.00001

I Row 51 0.0000 = 0.0000 Row 52 0.0000 = 0.0000 I-------------
I Row 39 0.0000 = 0.0000 1Row 4 0.0000 = 0.00001

File: Setco2 9/03/90 23:55:51 Page 1-7

CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

lConstrainti Activity I RHS IConstrainti Activity I RHS I
I Row 61 0.0000 = 0.0000 I Row 62 0.0000 = 0.0000-------------

IRow 63 0.0000 = 0.0000 1 Row 42 0,0000 = 0.00001I

I Row 65 0.0000 = 0.0000 1 Row 66 0.0000 = 0.00001

T oa Eror 0.0000 0.001Rw4 0000= .0001

--- -- -- -- -- -- -- -- --- -- -- -- -- -- -- -- --- -- -- -- ---161--



Appendix K: Set Covering LP83 (d-4)

..TITLE

SET COVERING LP83 FORMULATION (d-4)

..OBJECTIVE MINIMIZE

*source connectors

1000 XS1 + 1000 XS2 + 1000 XS3

*state I

+OXI10+0XII1 +0X112

+ 0 X210 + 0 X211 + 0 X212

+ 0 X310 + 0 X311 + 0 X312

*state 2

+ 0 X413 + 0 X414 + 0 X415

+ 0 X513 + 0 X514 + 0 X515

+ 0 X613 + 0 X614 + 0 X615

*state 3

+ 0 X716 + 0 X717 + 0 X718

+ 0 X816 + 0 X817 + 0 X818

+ 0 X916 + 0 X917 + 0 X918

*interstate links

+ 0 X14 + 0 X25 + 0 X36

+ 0 X47 + 0 X58 + 0 X69

*demand-sink connectors

+0 XIOT +0 XIIT +0 X12T

+0 X13T +0 XI4T +0 X15T

+0 XI6T +0 X17T +0 X18T
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*excess-sink connectors

-1 XOTE -1 XI1TE -I X12TE

- I X13TE - 1 XI4TE - I XI.TE

-1 XI6TE - 1 X17TE -1 XI8TE

..BOUNDS

*demand for mission 1 (nodes 10, 13, 16)

XOT >- 4

X13T >- 4

XI6T >= 4

*demand for mission 2 (nodes 11, 14, 17)

XIT >= 4

X14T >= 4

X17T >- 4

*demand for mission 3 (nodes 12, 15, 18)

XI2T >- 4

XI5T >= 4

XI8T >= 4

..CONSTRAINTS

NODE S: XSI + XS2 + XS3 >= I

NODE 1:XI10+X1I1 +X112+X14-4XS =0

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 = 0

NODE 3:X310+ X311 +X312+X36-4XS3=0
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NODE 4: X413 + X414 + X415 + X47 - 4 X14 - 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 = 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 = 0

NODE 7: X716 + X717 + X718 -3 X47 -0

NODE 8: X816 + X817 + X818 -3 X58 -0

NODE 9:X916 + X917 + X918 - 3 X69 - 0

NODE 10: XIOT + XIOTE - 8 XI 10 - 3 X210 - 2 X310 - 0

NODE l:XIIT+XIITE-5XII1 -6X211-7X311 -0

NODE 12: X12T + X12TE- 4 Xl 12- 9 X212 - 5 X312 = 0

NODE 13: X13T + X13TE - 6 X413 - 9 X513 - 4 X613 = 0

NODE 14: X14T + X14TE - 2 X414 - 3 X514 - 6 X614 = 0

NODE 15: X15T + X15TE- 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + XI6TE- 4 X716 - 6 X816 - 3 X916 = 0

NODE 17: X17T + XI7TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: X18T + X18TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T: - XIOT - XIIT - X12T
- XI3T - X14T - XI5T
- X16T - X17T - X18T <= 0

NODE TE: - XOTE - XIITE - X12TE
- XI3TE - X14TE - X15TE
- X16TE - X17TE - X18TE <= 0

* source connector flows

XSI <= I
XS2 <= I
XS3 <= I

* equi-distribution of flow at each location

XI1IO-Xll =0
X11O - X112 = 0
XIII -X112f=f0
XIIO-XSI =0
XIIO-XI4 =0

X210-X211 =0
X210 - X212 = 0
X211 - X212 = 0
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X210- XS2 - 0
X210- X25 - 0

X310-X311 -0
X310- X312 - 0
X311 - X312 - 0
X310-XS3 -0
X310-X36 -0

X413 - X414 = 0
X413 - X415 - 0
X414 - X415 - 0
X413-X47 '0
X14 - X47 -0

X513 - X514 - 0
X513 - X515 = 0
X514 - X515 - 0
X513-X58 '0
X25 - X58 = 0

X613 - X614 = 0
X613 - X615 - 0
X614 - X615 - 0
X613-X69 '0
X36 - X69 - 0

X716 - X717 = 0
X716 - X718 - 0
X717 - X718 = 0
X716-X47 =0

X816 - X817 = 0
X816 - X818 = 0
X817 - X818 = 0
X816-X58 =0

X916 - X917 = 0
X916 - X918 = 0
X917 - X918 = 0
X916-X69 =0

Statistics-
LP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MINIMIZED.
Variables: 54
Constraints: 66

5 LE, 60 EQ, 1 GE.
Non-zero LP elements: 195
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Disk Space: OK bytes.
Page Space: 29K bytes.
Capacity: 15.4% used.
Estimated Time: 00:00:33

Iter 46
Solution Time: 00:00:03
*Mayhave*ALTERNATE SOLUTION

File: Sstco4 9/03/g0 23:57:03 Page 1-1
SOLUTION (Minimized): 983.7143 0PER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

I XS1 0.2857 1,000.0000 1 XS2 0.2857 1,000.0000 1

I XS3 0.4286 1,000.0000 1 X110 0.2857 0.00001

I X1,11 0.2857 0.00001I X112 0.2867 0.0000 I

I X210 0.2867 0.00001I X211 0.2857 0.00001

I X212 0.2857 0.0000 I X310 0.4286 0.0000 I------------------
I X212 0.2867 0.00001I X310 0.4286 0.0000 I

I X311 0.286 0.00001I X312 0.286 0.00001

I X413 0.2857 0.00001I X414 0.2867 0.0000 I

I X45 0.2857 0.00001I X513 0.2857 0.00001

I X613 0.4286 3.00001I X614 0.4286 0.00001

File: Setco4 9/03/90 23:57:03 Page 1-2
SOLUTION (Minimized): 983.7143 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICoat IVariable IActivity ICoat I
I X615 0.4286 0.0000 I X716 0.2857 0.0000-------------------

I X615 0.287 0.0000 1 X716 0.2857 0.0000 I

I X917 0.2867 0.00001I X718 0.2867 0.00001
I X14 0.2857 0.0000 I X25 0.2857 0.0000 I-------------------
I X816 0.42867 0.0000 1 X817 0.2857 0.00001

I X5,8 0.2867 0.00001I X6 0.4286 0.00001

I X14T 0.2800 0.00001 X25T .0000 0.00001

----------- -- -- -- -- -- - -- -- -- -- - -- -- -- -- -- - ---16 6- - -



I X12T 4.0000 0.00001 X13T 4.0000 0.00001I

File: Setco4 9/03/90 23:57:03 Page 1-3
SOLUTION (Minimized): 983.7143 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable IActivity ICost I

-I X14T 4.0000 0.00001 X1------------T --4.0000 0.0000-- I ----

I X14T 4.0000 0.00001 X16T 4.0000 0.00001

I X16T 4.0000 0.00001 X17TE .0000 0.00001

I X11TE 2.1429 -1.0000 1 X12TE 1.8571 -1.0000 I

I X1STE 2.0000 -1.0001 X14TE 0.0000 -1.00001

I XISTE 1.8571 -1.0000 1 X16TE 0.1429 -1.00001

I X17TO 4.1429 -1.0000 1 X18TE 4.1429 -1.00001

File: Setco4 9/03/90 23:57:03 Page 1-4
CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstraintl Activity I RHS IConstrainti Activity I RHS I
I NODE 5 1.0000> 1.0000 NODE 1 0.0000 = 0.0000---------------

INODE 2 0.0000= 0 .0000 1 NODE 1 0.0000 = 0.00001I

---NODE--4--0.0000--=--0.0000-----NODE--5-0.0000----- 0.0000 --I
I NODE 2 0.0000 = 0.0000 1NODE 3 0.0000 = 0.00001

---NODE---8-0.0000---= --0.0000---NODE--9 --0.0000 --- 0.0000----

I NODE 10 0.0000 = 0.0000 1NODE 51 0.0000 = 0.00001I

---NODE--12--0.0000--=--0.0000---NODE--13-0.0000------0.0000---

I NODE 14 0.0000 = 0.0000 1NODE 15 0.0000 = 0.00001I

---NODE--16--0.0000---= 0.0000---NODE---17 --0.0000 --= --0.0000 -

I NODE 18 0.0000 = 0.0000 I NODE T -3.0000 = 0.0000

I NODE TE -1.2857 = 0.0000 I OwE 22 0.2857 = .00001I

I ROwE 2 0.857 = 1.0000 1 RO E 24 0.086 = 1.0000

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --16 7- --



I--ow--25 0.0000=--- 0.OOO----j-ow --26 --0.0000=----0.00001 --

I Row 27 0.0000 = 0.0000I1Row 28 0.0000 = 0.00001

I--ow 29 0.0000=- 0.OOOO-I------ow 30---0.0000=----0.00001 --

I Row 27 0.0000 = 0.000I1Row 28 0.0000 = 0.00001

I.......ow. 33.. 0..............0000 0.OOOI.w 34 0.000= 0000

IRow 35 0.0000 = 0.0000 1 Row 36 0.0000 = 0.00001

-I-ow 37-- 0.0000= o.OOOOI------ow --38 --0.0000=----0.0000 ---

I Row 39 0.0000 = 0.0000I1Row 40 0.0000 = 0.00001

I Row 41 0.0000 = 0.0000O1Row 34 0.0000 = 0.0000 1

I Row 43 0.0000 = 0.0000 Row 44 0.0000 = 0.0000--------------

I Row 45 0.0000 = 0.0000 1Row 46 0.0000 = 0.00001

I Row 47 0.0000 = 0.0000 Row 48 0.0000 = 0.0000--------------

I Row 39 0.0000 = 0.0000 1Row 30 0.0000 = 0.00001

I Row 51 0.0000 = 0.0000 Row 52 0.0000 = 0.0000 I-------------
I Row 3 0.0000 = 0.0000 1Row 4 0.0000 = 0.00001

File: Setco4 9/03/90 23:57:03 Page 1-7
CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstrainti Activity I RHS IConstrainti Activity IRHS I

I Row 61 0.0000 = 0.0000 I Row 62 0.0000 = 0.0000 I------------
IRow 63 0.0000 = 0.0000 1 Row 4 0.0000 = 0.00001I

IRow 65 0.0000 = 0.0000 1 Row 66 0.0000 = 0.00001

T otal7 Error: = 0.00 00 o 8 000 .00

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --168- --



Appendix L: Set Covering LP83 (d=6)

..TITLE

SET COVERING LP83 FORMULATION (d=6)

..OBJECTIVE MINIMIZE

*source connectors

1000 XSI + 1000 XS2 + 1000 XS3

*state I

+0X110+0XII1 +0X12

+ 0 X210 + 0 X211 + 0 X212

+ 0 X310 + 0 X311 + 0 X312

*state 2

+ 0 X413 + 0 X414 + 0 X415

+ 0 X513 + 0 X514 + 0 X515

+ 0 X613 + 0 X614 + 0 X615

*state 3

+ 0 X716 + 0 X717 + 0 X718

+ 0 X816 + 0 X817 + 0 X818

+ 0 X916 + 0 X917 + 0 X918

*interstate links

+ 0 X14 + 0 X25 + 0 X36

+ 0 X47 + 0 X58 + 0 X69

*"emand-sink co:nectors

+ 0 X1OT + 0 XIJT + 0 XI2T

+ 0 XI3T + 0 XI4T + 0 XI5T

+ 0 X16T + 0 X17T + 0 X18T
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*excess-sink connectors

-1 X1OTE -1 XI11TE -1 X12TE

- 1 X13TE - 1 X14TE - 1 X15TE

- 1 X 16TE 1 X 17TE - 1 X I8TE

..BOUNDS

*demand for mission I (nodes 10, 13, 16)

M1OT >= 6

X13T >= 6

X16T >= 6

*demand for mission 2 (nodes 11, 14, 17)

XI IT >= 6

X14T >= 6

X17T >= 6

*demand for mission 3 (nodes 12, 15, 18)

X12T >= 6

X15T >= 6

X18T >= 6

X.ONSTRAINTS

NODE S: XS I + XS2 + XS3 >= I

NODE :XI1O+ XII1 +X]12+ X14-4 XSI =0

NODE 2: X210 + X211 + X212 + X25 - 4 XS2 = 0

NODE 3: X310 + X311 + X312 + X36 - 4 XS3 = 0
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NODE 4: X413 + X414 + X415 + X47- 4 X14 = 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 = 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 - 0

NODE 7: X716 + X717 + X718 - 3 X47 = 0

NODE 8: X816 + X817 + X818 - 3 X58 = 0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE 10: XOT + XOTE - 8 XI 10 - 3 X210 - 2 X310 = 0

NODE 11:XIIT+XIITE- 5 XIII -6X211- 7 X311 =0

NODE 12: X12T + X12TE - 4 XI 12 - 9 X212- 5 X312 = 0

NODE 13: X13T + X13TE- 6 X413 - 9 X513 - 4 X613 = 0

NODE 14: XI4T + X14TE - 2 X414 - 3 X514 - 6 X614 = 0

NODE 15: X15T + X15TE - 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + X16TE - 4 X716 - 6 X816 - 3 X916 = 0

NODE 17: XI7T + XI7TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: X18T + XI8TE - 9 X718 - 9 X818 - 7 X918 = 0

NODE T: - X1OT - XI IT - X12T
- X13T - XI4T - XI5T
- XI6T - X17T - X18T <= 0

NODE TE: - X1OTE - X1ITE - X12TE
- X13TE - X14TE - XI5TE
- X16TE - X17TE - XI8TE <= 0

* source connector flows
XSI <= 1
XS2 <= 1
XS3 <= I

* equi-distribution of flow at ,ach location

XIIO-XllI =0
XIIO - X112 = 0
XIII -X112=0
XIIO-XSI =0
XIIO-X14 =0

X210 - X211 = 0
X210 - X212 = 0
X211 - X212 = 0
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X210-XS2 -0
X210-X25 -0

X310 - X311 - 0
X310 - X312 - 0
X311 - X312 - 0
X310-XS3 -0
X310-X36 -0

X413 - X414 - 0
X413 - X415 = 0
X414 - X415 = 0
X413-X47 =0
X14 - X47 -0

X513 - X514 - 0
X513 - X515 = 0
X514- X515 = 0
X513-X58 =0
X25 - X58 = 0

X613 - X614 = 0
X613 - X615 = 0
X614 - X615 = 0
X613-X69 =0
X36 - X69 = 0

X716 - X717 = 0
X716 - X718 = 0
X717 - X718 = 0
X716-X47 =0

X816 - X817 = 0
X816 - X818 = 0
X817 - X818 = 0
X816-X58 =0

X916 - X917 = 0
X916 - X918 = 0
X917 - X918 = 0
X916-X69 =0

Statistics-
LP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MINIMIZED.
Variables: 54
Constraints: 66

5 LE, 60 EQ, 1 GE.
Non-zero LP elements: 195
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Disk Space: OK bytes.
Page Space: 29K bytes.
Capacity: 15.4% used.
Estimated Time: 00:00:33

Iter 44
Solution Time: 00:00:02
*May hav*ALTE RNATE SOLUTION

File: SetcoG 9/03/90 23:57:57 Page 1-1
SOLUTION (Minimized): 1,458.4444 OPER767 TERM PROJECT - SET COVERING FORMUL

I Variable IActivity ICost IVariable IActivity ICost I

I XS1 0.4444 1,000.0000 I XS2 0.3704 1,000.00001

I XS3 0.6667 1,000.0000 I X110 0.4444 0.00001

I Xlii 0.4444 0.00001I X112 0.4444 0.00001

I X210 0.3704 0.00001I X211 0.3704 0.00001

I X212 0.3704 0.00001I X310 0.6667 0.00001

I X81i 0.6667 0.00001I X312 0.6667 0.00001

I X413 0.4444 0.00001I X414 0.4444 0.00001

I- ----- --- -- --- ------0.4--44-0.00----I-------0.3704---0.0000

I X45 0.3704 0.0000 1 X513 0.3704 0.00001

I X514 0.687 0.00001I X614 0.667 0.0000 I

File: Setco8 9/03/90 23:57:57 Page 1-2
SOLUTION (Minimized): 1,458.4444 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity'r Cost IVariable IActivity ICost I

I X615 0.6667 0.00001I X716 0.4444 0.00001

I X717 0.4444 0.00001I X718 0.4444 0.00001

I X816 0.3704 0.00001I X817 0.3704 0.00001

I X818 0.3704 0.0000 I X916 0.6667 0.00001

I X917 0.6667 0.00001I X918 0.6667 0.00001

I X14 0.4444 0.00001I X25 0.3704 0.0000 I

I X36 0.6667 0.00001I X47 0.4444 0.00001

I X68 0.3704 0.00001I X69 0.6667 0.00001

I X1OT 6.0000 0.00001I X11T 6.0000 0.00001
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I X12T 8.0000 0.00001 X13T 6.0000 0.00001I

File: Setco,6 9/03/90 23:57:57 Page 1-3
SOLUTION (Minimized): 1,458.4444 OPER767 TERM PROJECT - SET COVERING FORMUL

IVariable IActivity ICost IVariable I Activity I Cost I

-I XI4T 6.0000 0.0000---- ---I X1-ST -----6.0000 -0.00001 -----

I X14T 6.0000 0.0000 1 X15T 6.0000 0.00001

I X16T 6.0000 0.0000 1 X17TE .0000 -0.00001

I X18T .1001 -. 0000 1 XTE .044 -1.00001

I X11TE 2.6867 -1.0000 1 X12TE 0.0000 -1.00001I

I X15TE 2.6667 ---------------------1.0000 X1TE 0.0000 -1.0000

I X13TE 26148 -1.0000 1 X14TE 6.0000 -1.00001I

File: Setco6 9/03/90 23:57:57 Page 1-4
CONSTRAINTS:, OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstrainti Activity I RHS IConstrainti Activity I RHS I

I NODE S 1.4815 > 1.0000 1NODE 1 0.0000 = 0.00001I

---NODE--2--0.0000-----0.0000-----NODE--3-0.0000------0.0000 --I
I NODE 2 0.0000 = 0.0000 1 NODE 3 0.0000 = 0.00001I

-I-NODE--6--0.0000---=-0.0000---NODE--7--0.0000---=-0.0000----

I NODE 8 0.0000 = 0.0000 1 NODE 9 0.0000 = 0.00001

---NODE--10 0.0000-------0.0000 --NODE---11 --0.0000 --= --0.0000 -

I NODE 12 0.0000 = 0.0000 1 NODE 13 0.0000 = 0.00001

NODE 14 0.0000 = 0.0000 I NODE 15 0.0000 = 0.0000 I------------
I NODE 16 0.0000 = 0.0000 1NODE 17 0.0000 = 0.00001I

I NODE 18 0.0000 = 0.0000 1 NODE T1 05.0000 = 0.00001

I NODE TE 02.030 = 0.0000 I ODE 22 0.0004 = .00001

I ROwE 23 0.70 = 1.0000 1 RODE 24 0.667 = .00001

-- -- -- -- -- -- -- -- -- -- - -- - -- -- -- -- -- -- -- -- ---174-- -



IRow 25 0.0000 = 0.0000 1Row 26 0.0000 = 0.00001
I--ow--27--0.0000=----0.OOOOI---ow 28---0.0000=-- 0.00001 ---

I Row 29 0.0000 = 0.000I1Row 20 0.0000 = 0.00001

I--ow Si- 0.0000=- 0.OOOOI------o ---32 --0.0000=----0.00001 --

IRow 33 0.0000 = 0.O001Row 34 0.0000 = 0.00001

Row 35 0.0000= 0.O00OI----------o ---36 --0.0000=-- 0.0000 ----

IRow 31 0.0000 = 0.0000 1 Row 38 0.0000 = 0.00001

IRow 39 0.0000 = 0.0000 1Row 4 0.0000 = 0.00001

IRow 41 0.0000 = 0.0000 I Row 42 0.0000 = 0.00001
I Row 43 0,0000 = 0.0000 Row 44 0.0000 = 0.0000 I-------------
IRow 45 0.0000 = 0.0000 1Row 46 0.0000 = 0.00001
I Row 47 0.0000 = 0.0000 Row 48 0.0000 = 0.0000 I-------------
I Row 49 0.0000 = 0.0000 1Row 50 0.0000 = 0.00001

File: Setco6 9/03/90 23:57:57 Page 1-7
CONSTRAINTS: OPER767 TERM PROJECT - SET COVERING FORMULATION

IConstrainti Activity I RHS IConstrainti Activity I RHS I
I Row 61 0.0000 = 0.0000 I Row 62 0.0000 = 0.0000-------------

IRow 41 0.0000 = 0.0000 I Row 42 0.0000 = 0.00001

IRow 65 0.0000= 0.0000 I Row 66 0.0000 = 0.00001

T oa Eror 0.0000 0.001Rw4 0000= .0001

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --17 5- --



Appendix M: MICROSOLVE (d=2)

ARC PARAMETERS AND FLOWS
SOLUTION COST = 258.2672

ARCS THAT START AT 1
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 1 0 1 0 8 .25
11 2 0 1 0 5 -2.98E-08
12 3 0 1 0 4 0
4 4 0 1 0 4 7.14E-02

ARCS THAT START AT 2
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 5 0 1 0 3 0
11 6 0 1 0 6 0
12 7 0 1 0 9 .22222
5 8 0 1 0 4 .10185

ARCS THAT START AT 3
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 9 0 1 0 2 0
11 10 0 1 0 7 .2857143
12 11 0 1 0 5 0
6 12 0 1 0 4 .1018519

ARCS THAT START AT 4
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 13 0 1 0 6 0
14 14 0 1 0 2 0
15 15 0 1 0 7 .2857143
7 16 0 1 0 3 0

ARCS THAT START AT 5
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

------- ...... ..-.... ..... ....-- .....

13 17 0 1 0 9 .222222
14 18 0 1 0 3 0
15 19 0 1 0 6 0
8 20 0 1 0 3 .1851852
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ARCS THAT START AT 6
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 21 0 1 0 4 0
14 22 0 1 0 6 .33333
15 23 0 1 0 5 0
9 24 0 1 0 3 7.40E-02

ARCS THAT START AT 7
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 25 0 1 0 4 0
17 26 0 1 0 8 0
18 27 0 1 0 9 0

ARCS THAT START AT 8
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 28 0 1 0 6 .33333
17 29 0 1 0 7 0
18 30 0 1 0 9 .22222

ARCS THAT START AT 9
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 31 0 1 0 3 0
17 32 0 1 0 9 .22222
18 33 0 1 0 7 0

ARCS THAT START AT 10
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 34 Z 100001 0 1 2
21 35 0 99999 -1 1 0

ARCS THAT START AT I 1
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 36 2 100001 0 1 2
21 37 0 99999 -1 1 0

ARCS THAT START AT 12
GO TO ARC NO. LOWER UPPER COST GAIN FLOW
..... - -- - --....... . .. .. ... ----- -----

20 38 2 100001 0 1 2
21 39 0 99999 -1 1 0
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ARCS THAT START AT 13
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 40 2 100001 0 1 2
21 41 0 99999 -1 1 0

ARCS THAT START AT 14
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 42 2 100001 0 1 2
21 43 0 99999 -1 1 0

ARCS THAT START AT 15
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 44 2 100001 0 1 2
21 45 0 99999 -1 1 0

ARCS THAT START AT 16
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 46 2 100001 0 1 2
21 47 0 99999 -1 1 0

ARCS THAT START AT 17
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 48 2 100001 0 1 2
21 49 0 99999 -1 1 0

ARCS THAT START AT 18
GO TO ARC NO. LOWER UPPER COST C-.! IN FLOW
...... ....... ...... ...... ----- -- -... .--...

20 50 2 100001 0 1 2
21 51 0 99999 -1 1 0

ARCS THAT START AT 19
GO TO ARC NO. LOWER UPPER COST GAIN FLOW
1 52 0 1 1000 4 8.03E-02
2 53 0 1 1000 4 8.10E-02

3 54 0 1 1000 4 9.68E-02
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ARCS THAT START AT 20
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 55 0 99999 0 1 0

ARCS THAT START AT 21
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

SLACK 56 0 99999 0 1 0
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Appendix N: MICROSOLVE (d=4)

ARC PARAMETERS AND FLOWS
SOLUTION COST = 516.5344

ARCS THAT START AT 1
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 1 0 1 0 8 .5
11 2 0 1 0 5 -5.96E-08
12 3 0 1 0 4 0
4 4 0 1 0 4 .1428571

ARCS THAT START AT 2
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 5 0 1 0 3 0
11 6 0 1 0 6 0
12 7 0 1 0 9 .44444
5 8 0 1 0 4 .2037037

ARCS THAT START AT 3
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 9 0 1 0 2 0
11 10 0 1 0 7 .5714286
12 11 0 1 0 5 0
6 12 0 1 0 4 .2037037

ARCS THAT START AT 4
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 13 0 1 0 6 0
14 14 0 1 0 2 0
15 15 0 1 0 7 .5714286
7 16 0 1 0 3 0

ARCS THAT START AT 5
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 17 0 1 0 9 .444444
14 18 0 1 0 3 0
15 19 0 1 0 6 0
8 20 0 1 0 3 .3703704
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ARCS THAT START AT 6
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 21 0 1 0 4 0
14 22 0 1 0 6 .666667
15 23 0 1 0 5 0
9 24 0 1 0 3 .1481481

ARCS THAT START AT 7
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 25 0 1 0 4 0
17 26 0 1 0 8 0
18 27 0 1 0 9 0

ARCS THAT START AT 8
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 28 0 1 0 6 .666667
17 29 0 1 0 7 0
18 30 0 1 0 9 .444444

ARCS THAT START AT 9
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 31 0 1 0 3 0
17 32 0 1 0 9 .444444
18 33 0 1 0 7 0

ARCS THAT START AT 10
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 34 2 100001 0 1 4
21 35 0 99999 -1 1 0

ARCS THAT START AT II
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 36 2 100001 0 1 4
21 37 0 99999 -l 1 0

ARCS THAT START AT 12
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 38 2 100001 0 1 4
21 39 0 99999 -1 1 0
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ARCS THAT START AT 13
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 40 2 100001 0 1 4
21 41 0 99999 -1 1 0

ARCS THAT START AT 14
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 42 2 100001 0 1 4
21 43 0 99999 -1 1 0

ARCS THAT START AT 15
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 44 2 100001 0 1 4
21 45 0 99999 -1 1 0

ARCS THAT START AT 16
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 46 2 100001 0 1 4
21 47 0 99999 -1 1 0

ARCS THAT START AT 17
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 48 2 100001 0 1 4
21 49 0 99999 -I 1 0

ARCS THAT START AT 18
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 50 2 100001 0 1 4
21 51 0 99999 -1 1 0

ARCS THAT START AT 19
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

1 52 0 1 1000 4 .1607143
2 53 0 1 1000 4 .162037
3 54 0 1 1000 4 .1937831
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ARCS fiAT STA RT AT 20
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 55 0 99999 0 1 0

ARCS THAT START AT 21
GO TO ARC NO. IOWER UPPER COST GAIN FLOW

SLACK 56 0 99999 0 1 0
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Appendix 0: MICROSCLVE (d-6)

ARC PARAMETERS AND FLOWS
SOLUTION COST - Y14.8016

ARCS THAT START AT I
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 1 0 1 0 8 .75
11 2 0 1 0 5 0
12 3 0 1 0 4 0
4 4 0 1 0 4 .2142857

ARCS 'I HAT START AT 2
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 0 1 0 3 0
11 6 0 1 0 6 0
12 7 0 1 0 9 .66666
5 8 0 1 0 4 .30556

ARCS THAT START AT 3
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

10 9 0 1 0 2 0
11 10 0 1 0 7 .85714
12 11 0 1 0 5 0
6 12 0 1 0 4 .30556

ARCS THAT START AT 4
GO TO ARC NO. LOWER UPPER COST GAIN FLOW
...... ...... ----- ...... .. m... ..... .....

13 13 0 1 0 6 0
14 14 0 1 0 2 0
15 15 0 1 0 7 .85714
7 16 0 1 0 3 0

ARCS THAT START AT 5
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 17 0 1 0 9 .666o7
14 18 0 1 0 3 0
15 19 0 1 0 6 0
8 20 0 1 0 3 .55556
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ARCS THAT START AT 6
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

13 21 0 1 0 4 0
14 22 0 1 0 6 1
15 23 0 1 0 5 0
9 24 0 1 0 3 .22222

ARCS THAT START AT 7
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 25 0 1 0 4 0
17 26 0 1 0 8 0
18 27 0 1 0 9 0

ARCS THAT START AT 8
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 28 0 1 0 6 1
17 29 0 1 0 7 0
18 30 0 1 0 9 .66667

ARCS THAT START AT 9
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

16 31 0 1 0 3 0
17 32 0 1 0 9 .66667
18 33 0 1 0 7 0

ARCS THAT START AT 10
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 34 2 100001 0 1 6
21 35 0 99999 -1 1 0

ARCS THAT START AT 11
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 36 2 100001 0 1 6
21 37 0 99999 -1 1 0

ARCS THAT START AT 12
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 38 2 100001 0 1 6
21 39 0 99999 -1 1 0
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ARCS THAT START AT 13
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 40 2 100001 0 1 6
21 41 0 99999 -1 1 0

ARCS THAT START AT 14
GO TO ARC NO. LOWER UPPER COST GAIN FLOW
...... ....... ...... ...... .... f I..... .....

20 42 2 100001 0 1 6
21 43 0 99999 -1 1 0

ARCS THAT START AT 15
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 44 2 100001 0 1 6
21 45 0 99999 -1 1 0

ARCS THAT START AT 16
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 46 2 100001 0 1 6
21 47 0 99999 -1 1 0

ARCS THAT START AT 17
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 48 2 100001 0 1 6
21 49 0 99999 -1 1 0

ARCS THAT START AT 18
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 50 2 100001 0 1 6
21 51 0 99999 -1 1 0

ARCS THAT START AT 19
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

1 52 0 1 1000 4 .2410715
2 53 0 1 1000 4 .2430556
3 54 0 1 1000 4 .2906746
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ARCS THAT START AT 20
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

20 55 0 99999 0 1 0

ARCS THAT START AT 21
GO TO ARC NO. LOWER UPPER COST GAIN FLOW

SLACK 56 0 99999 0 1 0
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Appendix P: Max Coverage GAMS/BDMLP

GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1 SETS
2 1 LOCATIONS /1*3/
3 J STATES /1*3/
4 K SATELLITES /1*3/;
5
6 TABLE
7 W(I,J,K) NUMBER OF OBSERVATION BLOCKS
8
9 1 2 3
10
11 1.1 8 5 4
12 2.1 3 6 9
13 3.1 2 7 5
14
15 1.2 6 2 7
16 2.2 9 3 6
17 3.2 4 6 5
18
19 1.3 4 8 9
20 2.3 6 7 9
21 3.3 3 9 7;
22
23 PARAMETERS CTRLI(I) SELECTION CONTROL /1 9,2 9,3 9/
24 CTRL(J) EQUATION CONTROL /1*2 1, 3 0/;
25
26 SCALARS
27 M NUMBER OF STATES /3/
28 S NUMBER OF SATELLI FES /3/
29 P NUMBER OF FACILITIES SELECTED /2/
30 GAIN ARC GAIN /4/;
31
32 VARIABLES
33 X(I,J,K) BIPARTITE FLOW
34 T(J,K) SINK IN-FLOW
35 Y(I,J) SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW
36 Z OPTIMIZATION VARIABLE;
37
38 POSITIVE VARIABLES X,T,Y;
39
40 X.UP(I,J,K) = 1;
41 Y.UP(I,J) = 1;
42 T.UP(J,K) = P;
43
44 EQUATIONS
45 OBJ OBJECTIVE FUNCTION
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46 SRCE SOURCE FLOW
47 FNODE(IJ) FACILITY NODE FLOW
48 FNODEJ(1,1) STATE J FACILITY NODE FLOW
49 SNODE(J,K) SATELL t 'E NODE FLOW
50 SINK SINK FLOW
51 PAIRI(I,J,K) EQUI DISTRIBUTION OF FLOW
52 PAIR2(I) EQUI DISTRiBUVION OF FLOW
53 PAIR3(I,J) EQUI DISTRIBUTION OF FLOW
54 PAIR4(I,J) EQUI DISTRIBUTION OF FLOW

GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55
56 SELECTI(I) SELECT FACILITY
57 SELECTO(I) DO NOT SELECT FACILITY;
58
59 OBJ..
60 Z -E- SUM((I,J,K),W(I,J,K) * X(I,J,K));
61
62 SRCE..
63 SUM(I,Y(I,'I')) -E- P;
64
65 FNODE(I,J)$(CTRL(J) NE 0)..
66 SUM(K,X(I,J,K)) + Y(I,J+I) - GAIN * Y(I,J) =E- 0;
67
68 FNODEJ(I,J)$(CTRL(J) EQ 0)..
69 SUM(K,X(I,J,K)) - (GAIN - 1) * Y(I,J) =E= 0;
70
71 SNODE(J,K)..
72 T(J,K) - SUM(I,X(I,J,K)) =E= 0;
73
74 SINK..
75 SUM((J,K),T(J,K)) =E= M * S *P;
76
77 PAIRl(I,J,K)..
78 X(I,J,'1') - X(I,J,K) =E= 0;
79
80 PAIR2(I)..
81 X(I,'I','I') - Y(I,'l') =E= 0;
82
83 PAIR3(I,J)..
84 X(I,J,'2') - X(I,J,'3') =E= 0;
85
86 PAIR4(I,J)$(CTRL(J) NE 0)..
87 X(I,J,'I') - Y(I,J+1) =E= 0;
88
89 SELECII(I)$(CTRLI(I) EQ 1)..
90 Y(I,'I') =E= 1;
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91
92 SELECTO(I)$(CTRLI(I) EQ 0)..
93 Y(I,'l') -E- 0;
94
95
96 MODEL MAXCOVER /ALL/;
97 SOLVE MAXCOVER USING LP MAXIMIZING Z;
98 DISPLAY X.L,Y.L,T.L;
99
100

GAMS 2.05 VAX VMS 18-OCT.1990 11:43 PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

SYMBOL TYPE REFERENCES

CTRL PARAM DECLARED 24 DEFINED 24 REF 65
68 86

CTRLI PARAM DECLARED 23 DEFINED 23 REF 89
92

FNODE EQU DECLARED 47 DEFINED 66 IMPL-ASN 97
REF 96

FNODEJ EQU DECLARED 48 DEFINED 69 IMPL-ASN 97
REF 96

GAIN PARAM DECLARED 30 DEFINED 30 REF 66
69

I SET DECLARED 2 DEFINED 2 REF 7
23 33 35 47 48 51
52 53 54 56 57 2*60
63 3*66 2*69 72 2*78 2*81

2*84 2*87 89 90 92 93
CONTROL 40 41 60 63 65

68 72 77 80 83 86
89 92

J SET DECLARED 3 DEFINED 3 REF 7
24 33 34 35 47 48
49 51 53 54 2*60 65

3*66 68 2*69 2*72 75 2*78
2*84 86 2*87 CONTROL 40 41
42 60 65 68 71 75
77 83 86

K SET DECLARED 4 DEFINED 4 REF 7
33 34 49 51 2*60 66
69 2*72 75 78 CONTROL 40
42 60 66 69 71 75
77

M PARAM DECLARED 27 DEFINED 27 REF 75
MAXCOVER MODEL DECLARED 96 DEFINED 96 REF 97
OBJ EQU DECLARED 45 DEFINED 60 IMPL-ASN 97
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REF 96
P PARAM DECLARED 29 DEFINED 29 REF 42

63 75
PAIRI EQU DECLARED 51 DEFINED 78 IMPL-ASN 97

REF 96
PAIR2 EQU DECLARED 52 DEFINED 81 IMPL-ASN 97

REF 96
PAIR3 EQU DECLARED 53 DEFINED 84 IMPL-ASN 97

REF 96
PAIR4 EQU DECLARED 54 DEFINED 87 IMPL-ASN 97

REF 96
S PARAM DECLARED 28 DEFINED 28 REF 75
SELECTO EQU DECLARED 57 DEFINED 93 IMPL-ASN 97

REF 96
SELECTI EQU DECLARED 56 DEFINED 90 IMPL-ASN 97

REF 96
SINK EQU DECLARED 50 DEFINED 75 IMPL-ASN 97

REF 96
SNODE EQU DECLARED 49 DEFINED 72 IMPL-ASN 97

GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 4
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

SYMBOL TYPE REFERENCES

REF 96
SRCE EQU DECLARED 46 DEFINED 63 IMPL-ASN 97

REF 96
T VAR DECLARED 34 IMPL-ASN 97 ASSIGNED 42

REF 38 72 75 98
W PARAM DECLARED 7 DEFINED 7 REF 60
X VAR DECLARED 33 IMPL-ASN 97 ASSIGNED 40

REF 38 60 66 69 72
2*78 81 2*84 87 98

Y VAR DECLARED 35 IMPL-ASN 97 ASSIGNED 41
REF 38 63 2*66 69 81
87 90 93 93

Z VAR DECLARED 36 IMPL-ASN 97 REF 60
97

SETS

I LOCATIONS
J STATES
K SATELLITES

PARAMETERS
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CTRL EQUATION CONTROL
CTRLI SELECTION CONTROL
GAIN ARC GAIN
M NUMBER OF STATES
P NUMBER OF FACILITIES SELECTED
S NUMBER OF SATELLITES
W NUMBER OF OBSERVATION BLOCKS

VARIABLES

T SINK IN-FLOW
X BIPARTITE FLOW
Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW
Z OPTIMIZATION VARIABLE

EQUATIONS

FNODE FACILITY NODE FLOW
FNODEJ STATE J FACILITY NODE FLOW
OBJ OBJECTIVE FUNCTION
PAIRI EQUI DISTRIBUTION OF FLOW
PAIR2 EQUI DISTRIBUTION OF FLOW
PAIR3 EQUI DISTRIBUTION OF FLOW
PAIR4 EQUI DISTRIBUTION OF FLOW
SELECTO DO NOT SELECT FACILITY

GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 5
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

EQUATIONS

SELECTI SELECT FACILITY
SINK SINK FLOW
SNODE SATELLITE NODE FLOW
SRCE SOURCE FLOW

MODELS

MAXCOVER

COMPILATION TIME - 0.590 SECONDS
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GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 6
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE MAXCOVER USING LP FROM LINE 97

...OBJ -E- OBJECTIVE FUNCTION

OBJ.. - 8*X(1,1,1) - 5*X(1,1,2) - 4*X(1,1,3) - 6*X(1,2,I) - 2*X(1,2,2)

- 7*X(1,2,3) - 4*X(1,3,I) - 8*X(1,3,2) - 9*X(1,33) - 3*X(2,1,1)

- 6*X(2,1,2) - 9*X(2,1,3) - 9*X(2,2,1) - 3*X(2,2,2) - 6*X(2,2,3)

- 6*X(2,3,I) - 7*X(2,3,2) - 9*X(2,3,3) - 2*X(3,1,1) - 7*X(3,1,2)

- 5*X(3,1,3) - 4*X(3,2,I) - 6*X(3,2,2) - 5*X(3,2,3) - 3*X(3,3, I)

- 9*X(3,3,2) - 7*X(3,3,3) + Z =E= 0;

---SRCE =E= SOURCE FLOW

SRCE.. Y(1, 1) + Y(2, 1) + Y(3, 1) =E- 2;

---FNODE =E- FACILITY NODE FLOW

FNODE(,).. X(1,1,1) + X(1,1,2) + X(1,1,3) -4*Y(l,2) +Y(1,2) =E= 0;

FNODE(12).. X(12,,I) + X(21,2) + X(12,,3) - 4*Y(12) + Y(1,3) =E= 0;

REMAINING 3 ENTRIES SKIPPED

---FNODEJ =E= STATE J FACILITY NODE FLOW

FNODEJ(1,3).. X(1,3, I) + X(1,3,2) + X(1,3,3) - 3*Y(1,3) =E= 0;

FNODEJ(2,3).. X(2,3, I) + X(2,3,2) + X(2,3,3) - 3*Y(2,3) =E= 0;

FNODEJ(3,3).. X(3,3,I) + X(3,3,2) + X(3,3,3) - 3*Y(3,3) =E= 0;
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GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 7
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE MAXCOVER USING LP FROM LINE 97

---SNODE -E- SATELLITE NODE FLOW

SNODE(1, 1).. - X(I, 1, 1) - X(2, 1, 1) - X(3, 1, 1) + T(1, 1) -E- 0;

SNODE(1,2).. - X(1,1,2) - X(2,1,2) - X(3,1,2) + T(1,2) -E- 0;

SNODE(1,3).. -X(1, 1,3) - X(2,1,3) - X(3,1,3) + T(1,3) -E- 0;

REMAINING 6 ENTRIES SKIPPED

...SINK -E= SINK FLOW

SINK.. T(1,1) + T(1,2) + T(1,3) + T(2,I) + T(2,2) + T(2,3) + T(3,I) + T(3,2)

+ T(3,3) =E= 18 ;

---PAIR I =E= EQUI DISTRIBUTION OF FLOW

PAIRI(1,1,2).. X(1,1,1) - X(1,1,2) =E= 0;

PAIR(1,1,3).. X(1,1,1) - X(1,1,3) =E= 0;

PAIRI(,2,2).. X(1,2,1) - X(1,2,2) =E= 0;

REMAINING 15 ENTRIES SKIPPED

---PAIR2 =E= EQUI DISTRIBUTION OF FLOW

PAIR2(1).. X(1, 1, 1) - Y(1,I1) =E= 0;

PAIR2(2).. X(2,1,1) - Y(2,I) =E= 0;

PAIR2(3).. X(3, 1, 1) - Y(3, 1) =E= 0 ;
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GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 8
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE MAXCOVER USING LP FROM LINE 97

---PAIR3 -E- EQUI DISTRIBUTION OF FLOW

PAIR3(,).. X(1,1,2) - X(1,1,3) -E- 0;

PAIR3(1,2).. X(1,2,2) - X(1,2,3) -E- 0;

PAIR3(1,3).. X(1,3,2) - X(1,3,3) -E- 0;

REMAINING 6 ENTRIES SKIPPED

---PAIR4 =E= EQUT DISTRIBUTION OF FLOW

PAIR4(l,1).. X(1,1,1) - Y(1,2) =E= 0;

PAIR4(1,2).. X(1,2,I) - Y(1,3) =E- 0;

PAIR4(2,1).. X(2,1,1) - Y(2,2) =E= 0;

REMAINING 3 ENTRIES SKIPPED

---SELECT I =E= SELECT FACILITY

NONE

---SELECTO =E= DO NOT SELECT FACILITY

NONE

GAMS 2.05 VAX VMS 18-OCT-1990 11:43 PAGE 9
GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SOLVE MAXCOVER USING LP FROM LINE 97
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X BIPARTITE FLOW

X( 1,1, 1)
(.LO, .L, .UP - 0, 0, 1)

-8 QBJ
1 FNODE(1,l)

-1 SNODE(l,l)
I PAIRI(1,1,2)
I PAIRI(1,1,3)
1 PAIR2(1)
1 PAIR4(1,1)

X(1,1,2)
(.LQ, .L, .UP -- 0, 0, 1)

-5 OBJ
1 FNODE(l,1)

-1 SNODE(1,2)
-1 PAIR(1,1,2)
I PAIR3(1,1)

X(l, 1,3)
(.LO, .L, .UP - 0, 0, 1)

-4 OBJ
1 FNODE(,1)

-1 SNODE(1,3)
-1 PAIR(1,1,3)
-1 PAIR3(l,1)

REMAINING 24 ENTRIES SKIPPED

T SINK IN-FLOW

T(I,l)
(.LO, .L, .UP = 0, 0, 2)

1 SNODE(1,1)
1 SINK

T( 1,2)
(.LO, .L, .UP = 0, 0, 2)

1 SNODE(I,2)
I SINK

T( 1,3)
(10, .L, .UP = 0, 0, 2)

1 SNODE(I,3)
I SINK

REMAINING 6 ENTRIES SKIPPED
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GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SOLVE MAXCOVER USING LP FROM LINE 97

Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW

Y(l,l)
(.LO, .L, .UP 0, 0, 1)

1 SRCE
-4 FNODE(1,I)
-1 PAIR2(1)

Y(1,2)
(.LO, .L, .UP =0, 0, 1)

I FNODE(1,1)
-4 FNODE(1,2)
-1 PAIR4(I,I)

Y(1,3)
(.LO, .L, .UP = 0, 0, 1)

1 FNODE(1,2)
-3 FNODEJ(I,3)
-1 PAIR4(1,2)

REMAINING 6 ENTRIES SKIPPED

.... Z OPTIMIZATION VARIABLE

Z
(.LO, .L, .UP = -INF, 0, +INF)

1 OBJ

GAMS 2.05 VAX VMS 18-OCT* 1990 11:43 PAGE I1
GENERAL ALGEBRAIC MODELING SYSTEM
MODEL STATISTICS SOLVE MAXCOVER USING LP FROM LINE 97

MODEL STATISTICS

BLOCKS OF EQUATIONS 12 SINGLE EQUATIONS 57
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 46
NON ZERO ELEMENTS 190

GENERATION TIME - 0.930 SECONDS
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EXECUTION TIME - 1.550 SECONDS

GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 12
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE MAXCOVER USING LP FROM Lii\ E 97

SOLVE SUMMARY

MODEL MAXCOVER OBJECTIVE Z
TYPE LP DIRECTION MAXIMIZE
SOLVER BDMLP FROM LINE 97

SOLVER STATUS I NORMAL COMPLETION
* MODEL STATUS I OPTIMAL

* OBJECTIVE VALUE 111.0000

RESOURCE USAGE, LIMIT 0.530 1000.000
ITERATION COUNT, LIMIT 31 1000

BDM - LP VERSION 1.01

A. BROOKE, A. DRUD, AND A. MEERAUS,
ANALYTIC SUPPORT UNIT,
DEVELOPMENT RESEARCH DEPARTMENT,
WORLD BANK,
WASHINGTON, D.C. 20433, U.S.A.

WORK SPACE NEEDED (ESTIMATE) -- 7107 WORDS.
WORK SPACE AVAILABLE -. 7107 WORDS.

EXIT -- OPTIMAL SOLUTION FOUND.

LOWER LEVEL UPPER MARGINAL

---- EQU OBJ 1.000
---- EQU SRCE 2.000 2.000 2.000 -4.600

OBJ OBJECTIVE FUNCTION
SRCE SOURCE FLOW

---- EQU FNODE FACILITY NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.1 -2.400
1.2 -0.600
2.1 . -1.150
2.2 -0.850
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3.1 . . -1.150
3.2 . . 0.150

---- EQU FNODEJ STATE J FACILITY NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.3 . . 0.600
2.3 . . . -0.733
3.3 . . . -0.067

GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 13
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE MAXCOVER USING LP FROM LINE 97

.... EQU SNODE SATELLITE NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.1 -6.400
1.2 -6.400
1.3 -6.400
2.1 -6.400
2.2 -6.400
2.3 -6.400
3.1 -6.400
3.2 -6.400
3.3 -6.400

LOWER LEVEL UPPER MARGINAL

---- EQU SINK 18.000 18.000 18.000 6.400

SINK SINK FLOW

---- EQU PAIR I EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1.2 -1.000
1.1.3
1.2.2 2.600
1.2.3
1.3.2 -1.000
1.3.3 -2.000
2.1.2
2.1.3 -4.500
2.2.2
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2.2.3 2.100
2.3.2 -4.667
2.3.3
3.1.2
3.1.3 -1.500
3.2.2 -2.900
3.2.3
3.3.2 .- 3.333
3.3.3

---- EQU PAIR2 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1 5.000
2
3

GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 14
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE MAXCOVER USING LP FROM LINE 97

---- EQU PAIR3 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1
1.2 -1.200
1.3
2.1 0.750
2.2 -2.550
2.3 -3.333
3.1 1.750
3.2 -3.450
3.3 -u.667

---- EQU PAIR4 EQUI DISTRIBUT ON OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1
1.2 .- 2.400
2.1 2.250
2.2 1.350
3.1 -1.750
3.2 0.350
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---- EQU SELECTI SELECT FACILITY

NONE

---- EQU SELECTO DO NOT SELECT FACILITY

NONE

.... VAR X BIPARTITE FLOW

LOWER LEVEL UPPER MARGINAL

1.1.1 1.000 1.000
1.1.2 1.000 1.000
1.1.3 1.000 1.000
1.2.1 1.000 1.000
1.2.2 1.000 1.000
1.2.3 1.000 1.000
1.3.1 1.000 1.000
1.3.2 1.000 1.000
1.3.3 1.000 1.000
2.1.1 1.000 1.000
2.1.2 1.000 1.000
2.1.3 1.000 1.000
2.2.1 1.000 1.000

GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 15
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE MAXCOVER USING LP FROM LINE 97

VAR X BIPARTITE FLOW

LOWER LEVEL UPPER MARGINAL

2.2.2 1.000 1.000
2.2.3 1.000 1.000
2.3.1 1.000 1.000 5.000
2.3.2 1.000 1.000
2.3.3 1.000 1.000
3.1.1 1.000
3.1.2 1.000
3.1.3 1.000
3.2.1 1.000
3.2.2 1.000
3.2.3 1.000 -5.000
3.3.1 1.000
3.3.2 1.000
3.3.3 1.000
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---- VAR T SINK IN-FLOW

LOWER LEVEL UPPER MARGINAL

1.1 2.000 2.000
1.2 2.000 2.000
1.3 2.000 2.000
2.1 2.000 2.000
2.2 2.000 2.000
2.3 2.000 2.000
3.1 2.000 2.000
3.2 2.000 2.000
3.3 2.000 2.000

---- VAR Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW

LOWER LEVEL UPPER MARGINAL

1.1 1.000 1.000
1.2 1.000 1.000
1.3 1.000 1.000
2.1 1.000 1.000
2.2 1.000 1.000
2.3 1.000 1.000
3.1 1.000
3.2 1.000
3.3 1.000

GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 16
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE MAXCOVER USING LP FROM LINE 97

LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 111.000 +INF

Z OPTIMIZATION VARIABLE

* REPORT SUMMARY: 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
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GAMS 2.05 VAX VMS 18-OCT-1990 11:44 PAGE 17
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

98 VARIABLE X.L BIPARTITE FLOW

1 2 3

1.1 1.000 1.000 1.000
1.2 1.000 1.000 1.000
1.3 1.000 1.000 1.000
2.1 1.000 1.000 1.000
2.2 1.000 1.000 1.000
2.3 1.000 1.000 1.000

.... 98 VARIABLE Y.L SOURCE OUT-FLOW AND INTERSTATE
CONNECTOR

FLOW

1 2 3

1 1.000 1.000 1.000
2 1.000 1.000 1.000

98 VARIABLE T.L SINK IN-FLOW

1 2 3

1 2.000 2.000 2.000
2 2.000 2.000 2.000
3 2.000 2.000 2.000

**** FILE SUMMARY

INPUT GSO91M:[PFORQUES]MAXCOVR2.GMS;5
OUTPUT GSO9lM:[PFORQUES]MAXCOVR2.LIS;5

EXECUTION TIME = 1.010 SECONDS
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Appendix Q: Set Covering GAMS/BDMLP

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

I SETS
2 1 LOCATIONS /1*3/
3 J STATES /I*3/
4 K SATELLITES /13/;
5
6 TABLE
7 A(I,J,K) NUMBER OF OBSERVATION BLOCKS
8
9 1 2 3
10
I1 1.1 8 5 4
12 2.1 3 6 9
13 3.1 2 7 5
14
15 1.2 6 2 7
16 2.2 9 3 6
17 3.2 4 6 5
18
19 1.3 4 8 9
20 2.3 6 7 9
21 3.3 3 9 7;
22
23 PARAMETERS CTRLI(I) SELECTION CONTROL /1 9,2 9,3 9/
24 CTRLJ(J) EQUATION CONTROL /1*2 1, 3 0/
25 D(K) REQUIREMENTS VECTOR /1*3 6/
26 M(I) COST VECTOR /1*3 1000/
27 W(K) COST VECTOR /1*3 -1/;
28
29 SCALAR
30 GAIN ARC GAIN /4/;
31
32 VARIABLES
33 X(I,J,K) BIPARTITE FLOW
34 T(J,K) SINK T IN-FLOW
35 TE(J,K) SINK TE IN-FLOW
36 Y(I,J) SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW
37 Z OPTIMIZATION VARIABLE;
38
39 POSITIVE VARIABLES X,T,TE,Y;
40 X.UP(I,J,K) = 1;
41 Y.UP(I,J) = 1;
42
43 EQUATIONS
44 OBJ OBJECTIVE FUNCTION
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45 SRCE SOURCE FLOW
46 FNODE(I,J) FACILITY NODE FLOW
47 FNODEJ(I,J) STATE J FACILITY NODE FLOW
48 SNODE(J,K) SATELLITE NODE FLOW
49 PAIRI(I,J,K) EQUI DISTRIBUTION OF FLOW
50 PAIR2(I) EQUI DISTRIBUTION OF FLOW
51 PAIR3(I,J) EQUI DISTRIBUTION OF FLOW
52 PAIR4(I,J) EQUI DISTRIBUTION OF FLOW
53 REQ(J,K) REQUIREMENTS
54 SELECTI(I) SELECT FACILITY

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 SELECTO(I) DO NOT SELECT FACILITY;
56
57
58 OBJ..
59 Z =E- SUM(I,M(I) * Y(I,'I')) + SUM((J,K),W(K) * TE(J,K));
60
61 SRCE..
62 SUM(I,Y(I,'I')) =G= 1;
63
64 FNODE(I,J)$(CTRLJ(J) NE 0)..
65 SUM(K,X(I,J,K)) + Y(I,J+I) - GAIN*Y(I,J) =E= 0;
66
67 FNODEJ(I,J)$(CTRLJ(J) EQ 0)..
68 SUM(K,X(I,J,K)) - (GAIN - I)*Y(I,J) =E= 0;
69
70 SNODE(J,K)..
71 T(J,K) + TE(J,K) - SUM(I,X(I,J,K) * A(I,J,K)) =E= 0;
72
73 PAIR 1(I,J,K)..
74 X(I,J,'I') - X(I,J,K) =E= 0;
75
76 PAIR2(I)..
77 X(I,'I','I') Y(I,'I') =E= 0;
78
79 PAIR3(I,J)..
80 X(I,J,'2') - X(I,J,'3') =E- 0;
81
82 PAIR4(I,J)$(CTRLJ(J) NE 0)..
83 X(I,J,'I') - Y(I,J+I) =E= 0;
84
85 REQ(J,K)..
86 T(J,K) =G= D(K);
87
88 SELECT I(I)$(CTRLI(I) EQ 1)..
89 Y(I,'I') =E= 1;
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90
91 SELECT0(I)$(CTRLI(I) EQ 0)..
92 Y(I,'I') -E- 0;
93
94 MODEL SETCOVER /ALL/;
95 SOLVE SETCOVER USING LP MINIMIZING Z;
96 DISPLAY X.L,Y.L,T.L,TE.L;
97
98

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

SYMBOL TYPE REFERENCES

A PARAM DECLARED 7 DEFINED 7 REF 71
CTRLI PARAM DECLARED 23 DEFINED 23 REF 88

91
CTRLJ PARAM DECLARED 24 DEFINED 24 REF 64

67 82
D PARAM DECLARED 25 DEFINED 25 REF 86
FNODE EQU DECLARED 46 DEFINED 65 IMPL-ASN 95

REF 94
FNODEJ EQU DECLARED 47 DEFINED 68 IMPL-ASN 95

REF 94
GAIN PARAM DECLARED 30 DEFINED 30 REF 65

68
I SET DECLARED 2 DEFINED 2 REF 7

23 26 33 36 46 47
49 50 51 52 54 55

2*59 62 3*65 2*68 2*71 2*74
2*77 2*80 2*83 88 89 91

92 CONTROL 40 41 59 62
64 67 71 73 76 79
82 88 91

J SET DECLARED 3 DEFINED 3 REF 7
24 33 34 35 36 46
47 48 49 51 52 53
59 64 3*65 67 2*68 4*71

2*74 2*80 82 2*83 86
CONTROL 40 41 59 64 67

70 73 79 82 85
K SET DECLARED 4 DEFINED 4 REF 7

25 27 33 34 35 48
49 53 2*59 65 68 4*71
74 2*86 CONTROL 40 59 65
68 70 73 85

M PARAM DECLARED 26 DEFINED 26 REF 59
SETCOVER MODEL DECLARED 94 DEFINED 94 REF 95
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OBJ EQU DECLARED 44 DEFINED 59 IMPL-ASN 95
REF 94

PAIRI EQU DECLARED 49 DEFINED 74 IMPL-ASN 95
REF 94

PAIR2 EQU DECLARED 50 DEFINED 77 IMPL-ASN 95
REF 94

PAIR3 EQU DECLARED 51 DEFINED 80 IMPL-ASN 95
REF 94

PAIR4 EQU DECLARED 52 DEFINED 83 IMPL-ASN 95
REF 94

REQ EQU DECLARED 53 DEFINED 86 IMPL-ASN 95
REF 94

SELECTO EQU DECLARED 55 DEFINED 92 IMPL-ASN 95
REF 94

SELECTI EQU DECLARED 54 DEFINED 89 IMPL-ASN 95
REF 94

SNODE EQU DECLARED 48 DEFINED 71 IMPL-ASN 95
REF 94

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 4
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

SYMBOL TYPE REFERENCES

SRCE EQU DECLARED 45 DEFINED 62 IMPL-ASN 95
REF 94

T VAR DECLARED 34 IMPL-ASN 95 REF 39
71 86 96

TE VAR DECLARED 35 IMPL-ASN 95 REF 39
59 71 96

W PARAM DECLARED 27 DEFINED 27 REF 59
X VAR DECLARED 33 IMPL-ASN 95 ASSIGNED 40

REF 39 65 68 71 2*74
77 2*80 83 96

Y VAR DECLARED 36 IMPL-ASN 95 ASSIGNED 41
REF 39 59 62 2*65 68
77 83 89 92 96

Z VAR DECLARED 37 IMPL-ASN 95 REF 59
95

SETS

I LOCATIONS
J STATES
K SATELLITES

PARAMETERS
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A NUMBER OF OBSERVATION BLOCKS
CTRLI SELECTION CONTROL
CTRLJ EQUATION CONTROL
D REQUIREMENTS VECTOR
GAIN ARC GAIN
M COST VECTOR
W COST VECTOR

VARIABLES

T SINK T IN-FLOW
TE SINK TE IN-FLOW
X BIPARTITE FLOW
Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW
Z OPTIMIZATION VARIABLE

EQUATIONS

FNODE FACILITY NODE FLOW
FNODEJ STATE J FACILITY NODE FLOW
OBJ OBJECTIVE FUNCTION
PAIR I EQUI DISTRIBUTION OF FLOW
PAIR2 EQUI DISTRIBUTION OF FLOW
PAIR3 EQUI DISTRIBUTION OF FLOW

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 5
GENERAL ALGEBRAIC MODELING SYSTEM
SYMBOL LISTING

EQUATIONS

PAIR4 EQUI DISTRIBUTION OF FLOW
REQ REQUIREMENTS
SELECTO DO NOT SELECT FACILITY
SELECTI SELECT FACILITY
SNODE SATELLITE NODE FLOW
SRCE SOURCE FLOW

MODELS

SETCOVER

COMPILATION TIME = 0.650 SECONDS
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GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE SETCOVER USING LP FROM LINE 95

.... OBJ -E- OBJECTIVE FUNCTION

OBJ.. TE(l,l) + TE(1,2) + TE(1,3) + TE(2,1) + TE(2,2) + TE(2,3) + TE(3,1)

+ TE(3,2) + TE(3,3) - 1000*Y(l,l) - 1000*Y(2,1) - 1000*Y(3,1) + Z -E- 0;

.... SRCE -G- SOURCE FLOW

SRCE.. Y(l,I) + Y(2,1) + Y(3,1) -G= 1;

---- FNODE -E- FACILITY NODE FLOW

FNODE(I,I).. X(1,1,1) + X(1,1,2) + X(1,1,3) - 4*Y(1,1) + Y(1,2) -E- 0 ;

FNODE(1,2).. X(1,2,1) + X(1,2,2) + X(1,2,3) - 4*Y(1,2) + Y(1,3) =E= 0;

FNODE(2,1).. X(2,1,1) + X(2,1,2) + X(2,1,3) - 4*Y(2,1) + Y(2,2) =E- 0;

REMAINING 3 ENTRIES SKIPPED

---- FNODEJ =E= STATE J FACILITY NODE FLOW

FNODEJ(1,3).. X(1,3,1) + X(1,3,2) + X(1,3,3) - 3*Y(1,3) =E= 0;

FNODEJ(2,3).. X(2,3,1) + X(2,3,2) + X(2,3,3) - 3*Y(2,3) =E= 0;

FNODEJ(3,3).. X(3,3,1) + X(3,3,2) + X(3,3,3) - 3*Y(3,3) =E= 0;

---- SNODE =E= SATELLITE NODE FLOW

SNODE(I,I1).. - 8*X(l,1,1) - 3*X(2,1,1) - 2*X(3, 1, 1) + T(1, 1) + TE(1, 1) =E-- 0;

SNODE(1,2).. - 5*X(1,1,2) - 6*X(2,1,2) - 7*X(3,1,2) + T(1,2) + TE(J,2) =E= 0;
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SNODE(1,3).. - 4"X(1,1,3) - 9*X(2,1,3) - 5*X(3,1,3) + T(1,3) + TE(1,3) -E- 0;

REMAINING 6 ENTRIES SKIPPED

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 7
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE SETCOVER USING LP FROM LINE 95

---- PAIR I -E- EQUI DISTRIBUTION OF FLOW

PAIRI(I,1,2).. X(l,1,1) - X(1,1,2) ,E- 0;

PAIR1(1,1,3).. X(,1, 1) - X(1,1,3) ,E- 0

PAIR1(I,2,2).. X(1,2,1) - X(1,2,2) -E= 0;

REMAINING 15 ENTRIES SKIPPED

---- PAIR2 -E EQUI DISTRIBUTION OF FLOW

PAIR2(1).. X(1,1,1) - Y(l,l) -E= 0;

PAIR2(2).. X(2,1,1) - Y(2,1) =E= 0;

PAIR2(3).. X(3,1,1) - Y(3,1) =E= 0;

---- PAIR3 =E= EQUI DISTRIBUTION OF FLOW

PAIR3(1,1).. X(1,1,2) - X(1,1,3) =E= 0;

PAIR3(1,2).. X(1,2,2) - X(1,2,3) =E= 0;

PAIR3(I,3).. X(1,3,2) - X(1,3,3) =E= 0;

REMAINING 6 ENTRIES SKIPPED
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.... PAIR4 -E- EQUI DISTRIBUTION OF FLOW

PAIR4(l,l).. X(1,1,1) - Y(1,2) -E- 0;

PAIR4(I,2).. X(1,2,1) - Y(I,3) -E- 0;

PAIR4(2,1).. X(2,l,1) - Y(2,2) -E= 0;

REMAINING 3 ENTRIES SKIPPED

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 8
GENERAL ALGEBRAIC MODELING SYSTEM
EQUATION LISTING SOLVE SETCOVER USING LP FROM LINE 95

.... REQ =G= REQUIREMENTS

REQ(1,1).. T(I,I) -G- 6;

REQ(1,2).. T(1,2) -.G- 6;

REQ(1,3).. T(1,3) -G- 6;

REMAINING 6 ENTRIES SKIPPED

---- SELECTI =E= SELECT FACILITY

NONE

---- SELECTO =E= DO NOT SELECT FACILITY

NONE

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 9
GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SOLVE SETCOVER USING LP FROM LINE 95
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X BIPARTITE FLOW

X( 1,1,1)
(.LO, .L, .UP - 0, 0, 1)

1 FNODE(I,1)
-8 SNODE(I,1)
1 PAIR1(1,1,2)
1 PAIR1(1,1,3)
1 PAIR2(1)
1 PAIR4(I,1)

X( 1,1,2)
(.LO, .L, .UP - 0, 0, 1)

1 FNODE(1,1)
-5 SNODE(1,2)
-1 PAIR1(1,1,2)
I PAIR3(I,1)

X(1,1,3)
(.LO, .L, .UP - 0, 0, 1)

I FNODE(1,1)
-4 SNODE(1,3)
-1 PAIR1(1, 1,3)
.-1 PAIR3(1,1)

REMAINING 24 ENTRIES SKIPPED

T SINK T IN-FLOW

T(1,1)
(.LO, .L, .UP = 0, 0, +INF)

1 SNODE(1,1)
1 REQ(1,I)

T( 1,2)
(.LO, .L, .UP = 0, 0, +INF)

I SNODE(1,2)
1 REQ(1,2)

T( 1,3)
(.LO, .L, .UP = 0, 0, +INF)

1 SNODE(1,3)
1 REQ(1,3)

REMAINING 6 ENTRIES SKIPPED
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GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 10
GENERAL ALGEBRAIC MODELING SYSTEM
COLUMN LISTING SOLVE SETCOVER USING LP FROM LINE 95

.... TE SINK TE IN-FLOW

TE(l,l)
(.LO, .L, .UP - 0, 0, +INF)

1 OBJ
I SNODE(I,I)

TE(1,2)
(.LO, .L, .UP - 0, 0, +INF)

1 OBJ
1 SNODE(1,2)

TE(1,3)
(.LO, .L, .UP - 0, 0, +INF)

1 OBJ
1 SNODE(1,3)

REMAINING 6 ENTRIES SKIPPED

.... Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW

Y(l,l)
(.LO, .L, .UP = 0, 0, 1)

-1000 OBJ
I SRCE

-4 FNODE(I,I)
-1 PAIR2(1)

Y(1,2)
(.LO, .L, .UP = 0,0, 1)

1 FNODE(I,I)
-4 FNODE(I,2)
-1 PAIR4(1,1)

Y(1,3)
(.LO, .L, .UP = 0, 0, 1)

1 FNODE(1,2)
-3 FNODEJ(1,3)
-1 PAIR4(1,2)

REMAINING 6 ENTRIES SKIPPED
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Z OPTIMIZATION VARIABLE

Z
(.LO, .L, .UP - -INF, 0, +INF)

I OBJ

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 1
GENERAL ALGEBRAIC MODELING SYSTEM
MODEL STATISTICS SOLVE SETCOVER USING LP FROM LINE 95

MODEL STATISTICS

BLOCKS OF EQUATIONS 12 SINGLE EQUATIONS 65
BLOCKS OF VARIABLES 5 SINGLE VARIABLES 55
NON ZERO ELEMENTS 184

GENERATION TIME - 0.890 SECONDS

EXECUTION TIME - 1.440 SECONDS

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 12
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SETCOVER USING LP FROM LINE 95

SOLVE SUMMARY

MODEL SETCOVER OBJECTIVE Z
TYPE LP DIRECTION MINIMIZE
SOLVER BDMLP FROM LINE 95

* SOLVER STATUS 1 NORMAL COMPLETION
* MODEL STATUS 1 OPTIMAL
* OBJECTIVE VALUE 1458.4444

RESOURCE USAGE, LIMIT 0.520 1000.000
ITERATION COUNT, LIMIT 24 1000

BDM - LP VERSION 1.01

A. BROOKE, A. DRUD, AND A. MEERAUS,
ANALYTIC SUPPORT UNIT,
DEVELOPMENT RESEARCH DEPARTMENT,
WORLD BANK,
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WASHINGTON, D.C. 20433, U.S.A.

WORK SPACE NEEDED (ESTIMATE) -- 7567 WORDS.
WORK SPACE AVAILABLE -- 7567 WORDS.

EXIT -- OPTIMAL SOLUTION FOUND.

LOWER LEVEL UPPER MARGINAL

.... EQU OBJ . . . 1.000
---- EQU SRCE 1.000 1.481 +INF

OBJ OBJECTIVE FUNCTION
SRCE SOURCE FLOW

---- EQU FNODE FACILITY NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.1 -250.000
1.2 -139.417
2.1 -822.500
2.2 -205.625
3.1 -250.000
3.2 -219.917

---- EQU FNODEJ STATE J FACILITY NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.3 . -113.568
2.3 -167.185
3.3 . -86.259

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 13
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SETCOVER USING LP FROM LINE 95

---- EQU SNODE SATELLITE NODE FLOW

LOWER LEVEL UPPER MARGINAL

1.1 -54.167
1.2 -1.000
1.3 -1.000
2.1 -1.000
2.2 -101.981
2.3 -1.000
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3.1 -80.926
3.2 -1.000
3.3 -1.000

---- EQU PAIR I EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1.2
1.1.3 -491.000
1.2.2 64.546
1.2.3 -132.417
1.3.2 -105.568
1.3.3 -104.568
2.1.2
2.1.3 -1630.000
2.2.2 -99.306
2.2.3
2.3.2 -318.370
2.3.3
3.1.2
3.1.3 -488.000
3.2.2 177.056
3.2.3
3.3.2
3.3.3 .- 156.519

---- EQU PAIR2 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1 . .

2 . . 2290.000
3

---- EQU PAIR3 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1 . 245.000
1.2

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 14
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SETCOVER USING LP FROM LINE 95
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EQU PAIR3 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.3
2.1 816.500
2.2 -199.625
2.3 -158.185
3.1 243.000
3.2 -214.917
3.3 77.259

---- EQU PAIR4 EQUI DISTRIBUTION OF FLOW

LOWER LEVEL UPPER MARGINAL

1.1 307.667
1.2 201.287
2.1

2.2 295.931
3.1 629.667
3.2 38.861

.... EQU REQ REQUIREMENTS

LOWER LEVEL UPPER MARGINAL

1.1 6.000 6.000 +INF 54.167
1.2 6.000 6.000 +INF 1.000
1.3 6.000 6.000 +INF 1.000
2.1 6.000 6.000 +INF 1.000
2.2 6.000 6.000 +INF 101.981
2.3 6.000 6.000 +INF 1.000
3.1 6.000 6.000 +INF 80.926
3.2 6.000 6.000 +INF 1.000
3.3 6.000 6.000 +INF 1.000

---- EQU SELECTI SELECT FACILITY

NONE

---- EQU SELECTO DO NOT SELECT FACILITY

NONE
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GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 15
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SETCOVER USING LP FROM LINE 95

.... VAR X BIPARTITE FLOW

LOWER LEVEL UPPER MARGINAL

1.1.1 0.444 1.000
1.1.2 0.444 1.000
1.1.3 0.444 1.000
1.2.1 0.444 1.000
1.2.2 0.444 1.000
1.2.3 0.444 1.000
1.3.1 0.444 1.000
1.3.2 . 0.444 1.000
1.3.3 0.444 1.000
2.1.1 0.370 1.000
2.1.2 0.370 1.000
2.1.3 0.370 1.000
2.2.1 0.370 1.000
2.2.2 0.370 1.000
2.2.3 0.370 1.000
2.3.1 0.370 1.000
2.3.2 0.370 1.000
2.3.3 0.370 1.000
3.1.1 0.667 1.000
3.1.2 0.667 1.000
3.1.3 0.667 1.000
3.2.1 0.667 1.000
3.2.2 0.667 1.000
3.2.3 0.667 1.000
3.3.1 0.667 1.000
3.3.2 0.667 1.000
3.3.3 0.667 1.000

.... VAR T SINK T IN-FLOW

LOWER LEVEL UPPER MARGINAL

1.1 6.000 +INF
1.2 6.000 +INF
1.3 6.000 +INF
2.1 6.000 +INF
2.2 6.000 +INF
2.3 6.000 +INF
3.1 6.000 +INF
3.2 6.000 +INF
3.3 6.000 +INF
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---- VAR TE SINK TE IN-FLOW

LOWER LEVEL UPPER MARGINAL

1.1 . . +INF 53.167
1.2 . 3.111 +INF

GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 16
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SETCOVER USING LP FROM LINE 95

VAR TE SINK TE IN-FLOW

LOWER LEVEL UPPER MARGINAL

1.3 2.444 +INF
2.1 2.667 +INF
2.2 +INF 100.981
2.3 2.667 +INF
3.1 +INF 79.926
3.2 6.148 +INF
3.3 6.000 +INF

.... VAR Y SOURCE OUT-FLOW AND INTERSTATE CONNECTOR FLOW

LOWER LEVEL UPPER MARGINAL

1.1 0.444 1.000
1.2 0.444 1.000
1.3 0.444 1.000
2.1 0.370 1.000
2.2 0.370 1.000
2.3 0.370 1.000
3.1 0.667 1.000
3.2 0.667 1.000
3.3 0.667 1.000

LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 1458.444 +INF

Z OPTIMIZATION VARIABLE

* REPORT SUMMARY: 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED

219



GAMS 2.05 VAX VMS 18-OCT-1990 11:18 PAGE 17
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

96 VARIABLE X.L BIPARTITE FLOW

1 2 3

1.1 0.444 0.444 0.444
1.2 0.444 0.444 0.444
1.3 0.444 0.444 0.444
2.1 0.370 0.370 0.370
2.2 0.370 0.370 0.370
2.3 0.370 0.370 0.370
3.1 0.667 0.667 0.667
3.2 0.667 0.667 0.667
3.3 0.667 0.667 0.667

---- 96 VARIABLE Y.L SOURCE OUT-FLOW AND INTERSTATE
CONNECTOR

FLOW

1 2 3

1 0.444 0.444 0.444
2 0.370 0.370 0.370
3 0.667 0.667 0.667

96 VARIABLE T.L SINK T IN-FLOW

1 2 3

1 6.000 6.000 6.000
2 6.000 6.000 6.000
3 6.000 6.000 6.000

96 VARIABLE TE.L SINK TE IN-FLOW

1 2 3

1 3.111 2.444
2 2.667 2.667
3 6.148 6.000
**** FILE SUMMARY
INPUT GSO91M:[PFORQUES]SETCOVR6.GMS;3
OUTPUT GS091M:[PFORQUESISETCOVR6.LIS;2
EXECUTION TIME = 1.080 SECONDS
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Appendix R: Weighted-Sum Max Coverage

MIP83 MAXSUM OUTPUT MAXSUM.OUT

Copyright (C) 1986 by Sunset Software.
All Rights Reserved Worldwide.
1613 Chelsea Road, Suite 153
San Marino, California 91108 U.S.A.

Licensed Solely To: Wright-Patterson Air Force Base

..TITLE
WEIGHTED-SUM MAX COVERAGE FORMULATION

..OBJECTIVE MAXIMIZE
0.0 FI - 1.0 F2

*arc connectors
+ 0 [[XS1]] + 0 [[XS2]] + 0 [[XS3]]
*state 1
+ 0 XIO + 0 XIll + 0 X112
+0X210+0X211 +0X212
+ 0 X310 + 0 X311 + 0 X312
*state 2
+ 0 X413 + 0 X414 + 0 X415
+ 0 X513 + 0 X514 + 0 X515
+ 0 X613 + 0 X614 + 0 X615
*state 3
+ 0 X716 + 0 X717 + 0 X718
+ 0 X816 + 0 X817 + 0 X818
+ 0 X916 + 0 X917 + 0 X918
*interstate links
+ 0 X14 + 0 X25 + 0 X36
+ 0 X47 + 0 X58 + 0 X69
*sink connectors
+0 XIOT +0 XIIT +0 X12T
+0 XI3T +0 XI4T +0 XI5T
+0 X16T +0 XI7T +0 X18T
*select 'p' facilities
+0p

..CONSTRAINTS

OBJI:
*state I
+8X1l0+5X11 +4X112
+3X210+6X211 +9X212
+ 2 X310 + 7 X311 + 5 X312
*state 2
+ 6 X413 + 2 X414 + 7 X415
+ 9 X513 + 3 X514 + 6 X515
+ 4 X613 + 6 X614 + 5 X615
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*state 3
+ 4 X716 + 8 X717 + 9 X718
+ 6 X816 + 7 X817 + 9 X818
+ 3 X916 + 9 X917 + 7 X918

- Fl - 0

OBJ2:
12.223 XS1 + 13.556 XS2 + 11.111 XS3 - F2= 0

NODE S:XSI +XS2+XS3 -p =0

NODE I:XII0+Xlll+XI12+XI4-4XSI=0

NODE 2: X210 + X211 + X212 + X25- 4 XS2 - 0

NODE 3: X310 + X311 + X312 + X36 -4 XS3 = 0

NODE 4: X413 + X414 + X415 + X47 -4 X14 = 0

NODE 5: X513 + X514 + X515 + X58 -4 X25 = 0

NODE 6: X613 + X614 + X615 + X69 - 4 X36 = 0

NODE 7: X716 + X717 + X718 -3 X47 = 0

NODE 8: X816 + X817 + X818 -3 X58 = 0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE 10: XOT - XI10 - X210 - X310 = 0

NODE 11:XIIT-XIII -X211 -X311 =0

NODE 12: X12T - X112 - X212 - X312 = 0

NODE 13: X13T - X413 - X513 - X613 = 0

NODE 14: X14T - X414 - X514 - X614 = 0

NODE 15: XI5T - X415 - X515 - X615 = 0

NODE 16: XI6T - X716 - X816 - X916 = 0

NODE 17: X17T - X717 - X817 - X917 = 0

NODE 18: XI8T - X718 - X818 - X918 = 0

* for the next constraint, coefficient of 'p' is (j*k)
* where *
* j - number of states (months) *
* k = number of demand locations (missions)
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NODE T:-XIOT-XIIT-Xl2T
- XI3T - X14T - XI5T
- X16T - X17T- X18T + 9 p = 0

* select 'p' facilities
p=I

* sink-connector flows
XIOT- p - 0
XIIT- p -0
XI2T - p - 0
XI3T - p -0
X14T - p - 0
XI5T - p - 0
X16T - p - 0
XI7T - p - 0
XI8T - p - 0

* equi-distribution of flow at each location
Xl0I- XIll -0
XII0 - X1l2 = 0
XIll -X112=0
XIIO-XSI =0
XIIO-Xl4 =0

X210- X211 = 0
X210 - X212 = 0
X211 - X212 = 0

X210-XS2 =0
X210-X25 =0

X310 - X311 = 0
X310 - X312 = 0
X311 - X312 = 0
X310-XS3 =0
X310-X36 =0

X413 - X414 = 0
X413 - X415 = 0
X414 - X415 = 0
X413-X47 =0
X14 - X47 =0

X513 - X514 = 0
X513 - X515 = 0
X514 - X515 = 0
X513-X58 =0
X25 - X58 = 0
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X613 - X614 - 0
X613 - X615 - 0
X614 - X615 - 0
X613-X69 =0
X36 - X69 - 0

X716 - X717 - 0
X716- X718 - 0
X717 - X71? - 0
X716-X47 =0

X816 - X817 - 0
X816 - X818 - 0
X817 - X818 - 0
X816-X58 -0

X916 - X917 - 0
X916 - X918 = 0
X917 - X918 = 0
X916-X69 =0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
MIP Strategy: 1
Variables: 48

Integer: 3
Constraints: 74

0 LE, 74 EQ, 0 GE.
Non-zero LP elements: 227
Disk Space: OK bytes.
Page Space: 28K bytes.
Capacity: 15.8% used.
Estimated Time: 00:00:44

Iter 47
Solution Time: 00:00:03
*May have*A LTE R NATE SOLUTION

INTEGER SOLUTION
File: MAXSUM 11/25/90 17:14:40 Page 1-1

SOLUTION (Maximized): -11.1110 WEIGHTED-SUM MAX COVERAGE FORMULATION

Variable I Activity I Cost I Variable I Activity I Cost I
...............................................................................

I F1 48.0000 0,00001 F2 11.1110 -1.00001

I 'S1 0.0000 0.0000 1 XS2 0.0000 0.00001

I XSS 1.0000 0,0000 1 X110 0.0000 0.0000I
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I Xlii 0.0000 0.00001I X112 0.0000 0.00001

I X210 0.0000 0.00001I X211 0.0000 0.0000 I

I X212 0.0000 0.00001I X310 1.0000 0.00001

I X311 1.0000 0.00001I X312 1.0000 0.00001

I X---lS--0.0000- 0.0000------I --X41 ----0.0000 -- 0.0000 -----I
I X413 0.0000 0.00001I X414 0.0000 0.00001

I X614 0.0000 0.00001I X515 0.0000 0.00001I

File: hmASUM 11/25/90 17:14:40 Page 1-2
SOLUTION (Maximised): -11.1110 WEIGHTED-SUM MAX COVERAGE FORMULATION

IVariable IActivity ICost IVariable IActivity ICost I

I X613 1.0000 0.00001I X614 1.0000 0.0000 I
I X615 1.0000 0.0000 I X716 0.0000 0.0000--------------------

I X616 0.0000 0.00001I X716 0.0000 0.0000 I

I X717 0.0000 0.00001I X718 0.0000 0.00001

I X14 0.0000 0.0000 I X25 0.0000 0.0000--------------------

1 X816 0.0000 0.00001 X817 0.0000 0.00001

I X818 0.0000 0.0000 I X6 1.0000 0.00001

1 X1T 1.0000 0.00001I X18T 1.0000 0.00001

I X14T .0000 0.00001I X25T .0000 0.0000 I

I X14T 1.0000 0.00001I X47T .0000 0.00001

I X58T .0000 0.00001I Xl7T 1.0000 0.00001

I X18T 1.0000 0.0000 I pT 1.0000 0.00001

File: MAXSUM 11/25/90 17:14:40 Page 1-
CONSTRINTS:iizd: -11 WEIGHTED-SUM MAX COVERAGE FORMULATION

I VaraleI Activity I Cost I VaraleI Activity I Cos I

I X12T 0.0000 = 0.00001 X13T 0.0000= 0.00001

I NODE 1 .0000= 0.0000 NOD 1 0.0000 0.0000

----------- -- -- -- -- -- - -- -- -- -- - -- -- -- -- -- - ---22 5- - -



INODE 2 0.0000 = 0.0000 1 NODE S 0.0000 = 0.00001

-I-NODE 4-- 0.0000= 0.00001-- NODE-----5 -0.0000=---0.00001--

I NODE 4 0.0000 = 0.0000 1 NODE 7 0.0000 = 0.00001

I NODE 8 0.0000= 0.00001 NODE 9 0.0000= 0.00001--------------

I NODE 10 0.0000 = 0.0000 1 NODE 11 0.0000 = 0.00001I

------------------ NODE-12-0.0000= 0.00---NODE-13 0.0000= -0.00 --

I NODE 14 0.0000 = 0.0000 1NODE 15 0.0000 = 0.00001

I NODE 16 0.0000 = 0.0000 1 NODE 17 0.0000 = 0.00001

I NODE 18 0.0000 = 0.0000 1 NODE T3 0.0000 = 0.00001I

I ROE 27 0.0000 = 0.0000 Ro 28D 1 0.0000 = 0.00001

I ROwE 35 0.0000 = 0.0000 I RO E 36 0.0000 = 0.00001

File: MLAXSUM 11/25/90 17:14:40 Page 1-6
CONSTRAINTS: WEIGHTED-SUM MAX COVERAGE FORMULATION

IConstrainti Activity I RHS jConstraintj Activity I RHS I

Ro NOD31 0.0000 = 0.000 I RO E T4 0.0000 = 0.00001

I Row 45 0.0000 = 0.0000 Row 46 0.0000 = 0.0000--------------

I Row 27 0.0000 = 0.0000 1Row 24 0.0000 = 0.00001

I Row 49 0.0000 = 0.0000 Row 50 0.0000 = 0.0000--------------

I Row 21 0.0000 = 0.0000 1 Row 2 0.0000 = 0.00001

Row 53 0.0000 = 0.0000 Row 54 0.0000 = 0.0000 I--------------
I Row 55 0.0000 = 0.0000 1 Row 56 0.0000 = 0.00001

-- -- -- -- --- -- -- - -- -- -- -- - -- -- -- - -- -- -- -- --22 6-- -



I Row 57 0.0000 = 0.0000 1 Row 58 0.0000 = 0.0000 I

I Row 69 0.0000 = 0.OOI Row 60 0.0000 = 0.00001

File: MAXSUM 11/25/90 17:14:40 Page 1-7
CONSTRAINTS: WEIGHTED-SUM MAX COVERAGE FORMULATION

IConstraintl Activity I RHS IConstraintl Activity IRHS I
-I-ow 61 0.0000=---- 0.OOOO---------62 --0.0000=----0.00001 --

IRow 63 0.0000 = 0.0000 1 Row 64 0.0000 = 0.00001
I--ow- 65- 0.0000-= 0.OOOOI-----ow --66 0.0000=-- 0.0000w----

I Row 67 0.0000 = 0.000I1Row 68 0.0000 = 0.00001

---ow 69---0.0000= 0.OO--0----I-o-w 70 - 0.0000=----0.0000 ---

IRow 71 0.0000 = 0.0000 1 Row 72 0.0000 = 0.00001

I Row 73 0.0000 = 0.0000 1Row 70 0.0000 = 0.00001

Total Error: 0.000000
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Appendix S.- Constraint-Method Max Coverage

MIP83 MAXCON OUTPUT MAXCON.OUT

Copyright (C) 1986 by Sunset Software.
All Rights Reserved Worldwide.
1613 Chelsea Road, Suite 153
San Marino, California 91108 U.S.A.

Licensed Solely To: Wright-Patterson Air Force Base

..TITLE
CONSTRAINT-METHOD MAX COVERAGE FORMULATION

_.OBJECTIVE MAXIMIZE
Fl

*arc connectors
+ 0 [[XSlI]] + 0 [[XS2]J + 0 [[XS3]]
*state 1
+0XII0+OXIII +0X112
+ 0X210 +0 X211 + 0X212
+ 0X310 +0 X311 + 0X312
*state 2
+ 0 X413 + 0 X414 + 0 X415
+ 0 X513 + 0 X514 + 0 X515
+ 0 X613 + 0 X614 + 0 X615
*state 3

+ 0 X716 + 0 X717 + 0 X718
+ 0 X816 + 0 X817 + 0 X818
+ 0 X916 + 0 X917 + 0 X918
*inlterstate links
+ 0 X14 + 0 X25 + 0 X36
+ 0 X47 + 0 X58 + 0 X69
*sink connectors
+ 0 XIOT + 0 XI IT + 0 X12T
+0 X13T +0 X14T +0 X15T
+0 X16T +0 X17T +0 X18T
*select 'p' facilities
+O0p
*variance criterion function
+ 0 F2

-.CONSTRAINTS

OBJI1:
*state I
+ 8 X10+ 5 X11 + 4X112
+ 3 X210 + 6 X211I + 9 X212
+ 2X310 + 7X311 + 5X312
*state 2
+ 6 X413 + 2 X414 + 7 X415
+ 9 X513 + 3 X514 + 6 X515
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+ 4 X613 + 6 X614 + 5 X615
*state 3

+ 4 X716 + 8 X717 + 9 X718
+ 6 X816 + 7 X817 + 9 X818
+ 3 X916 + 9 X917 + 7 X918

- Fl - 0

OBJ2:
12.223 XSI + 13.556 XS2 + 11.111 XS3- F2 - 0

SATISFICE: F2 <- 13.5560

NODE S: XSI + XS2 + XS3 - p,- 0

NODE I:XIIO+XIII +XI12+XI4-4XSI -0

NODE 2: X210 + X211 + X212 + X25 -4 XS2 -0

NODE 3:X310 + X311 + X312 + X36 - 4 XS3 - 0

NODE 4: X413 + X414 + X415 + X47 - 4 X14 = 0

NODE 5: X513 + X514 + X515 + X58 - 4 X25 = 0

NODE 6:X613 + X614 + X615 + X69- 4 X36 = 0

NODE 7: X716 + X717 + X718 - 3 X47 = 0

NODE 8: X816 + X817 + X818 -3 X58 =0

NODE 9: X916 + X917 + X918 - 3 X69 = 0

NODE JO: XIOT - XI10 - X210 - X310 = 0

NODE 1I:XIIT-XIII -X211 -X311 =0

NODE 12: XI2T - X112 - X212 - X312 = 0

NODE 13: XI3T - X413 - X513 - X613 = 0

NODE 14: XI4T - X414 - X514 - X614 = 0

NODE 15: XI5T - X415 - X515 - X615 = 0

NODE 16: X16T - X716 - X816 - X916 = 0

NODE 17: X17T - X717 - X817 - X917 = 0

NODE 18: X18T - X718 - X818 - X918 = 0
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.. . . . . . .. . . . . . . .. . . . . . . .. . . . . . .

*for the next constraint, coefficient of 'p' is (j*k)
*where

* j -number of states (months)
* k -number of demand locations (missions)

.........................................................

NODE T:-XlOT-XllT-X12T
- X13T - X14T - X15T
- X16T - X17T - X18T + 9 pm 0

*select Vp facilities
pm M1

* sink-connector flows
MlOT - p - 0
MIlT - p - 0
X12T - p - 0
X13T - p -0
X14T - p -0
X15T - p - 0
X16T - p - 0
X17T - p - 0
X1I8T - p - 0

* equi-distribution of flow at each location
XlIO- X111 -o0
X110 - X112 -0
XIIl - X1 12=0
XIIO-XSI =0
X110-X14 -0

X210 -X211 --0
X210 - X212 - 0
X211 -X212 =0

X210 -XS2 = 0
X210-X25 =0

X310 -X311 = 0
X310 - X312 = 0
X311 - X312= 0
X310-XS3 =0
X310-X36 =0

X413 - X414 = 0
X413 - X415 = 0
X414 - X415 = 0
X413 -X47 =0
X14 - X47 =0

230



X513 - X514 - 0
X513 - X515 - 0
X514 - X515 - 0
X513 - X58 0
X25 -X58 -

X613 - X614 - 0
X613 - X615 - 0
X614 - X615 - 0
X613 - X69 0
X36 - X69 - 0

X716 - X717 - 0
X716 - X718 - 0
X717 - X718 - 0
X716 - X47 0

X816 - X817 - 0
X816 - X818 - 0
X817 - X818 - 0
X816-X58 -0

X916 - X917 - 0
X916 - X918 - 0
X917 - X918 - 0
X916-X69 - 0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MAXIMIZED.
MIP Strategy: 1
Variables: 48
Integer: 3

Constraints: 75
1 LE, 74 EQ, 0 GE.

Non-zero LP elements: 228
Disk Space: OK bytes.
Page Space: 29K bytes.
Capacity: 15.9% used.
Estimated Time: 00:00:45

Iter 47
Solution Time: 00:00:04
*Mayhave*ALTERNATE SOLUTION

INTEGER SOLUTION
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File: MAXCON 11/25/90 17:15:06 Page 2-1
SOLUTION (Maximimsed): 58.0000 CONSTRAINT-METHOD MAX COVERAGE FORMULATION

IVariable I Activity ICost IVariable IActivity ICost I

I Fl 58.0000 1.00001 I XS1 0.0000 0.0000 I

I XS2 1.0000 0.00001I XSS 0.0000 0.0000 I

I X1l0 0.0000 0.00001I Xlii 0.0000 0.00001

I X112 0.0000 0.0000 I X210 1.0000 0.0000-------------------

I X112 1.0000 0.00001I X210 1.0000 0.0000 I

I X211 0.0000 0.00001I X212 0.0000 0.0000 I

I X310 0.0000 0.00001I X311 0.0000 0.00001

I X312 0.0000 0.0000 I X413 0.0000 0.0000 I

I X414 1.0000 0.0000 I X45 1.0000 0.0000 I

I X515 1.0000 0.00001I X613 0.0000 0.00001

File: MAXCON 11/25/90 17:15:06 Page 1-2
SOLUTION (Maxmised):, 58.0000 CONSTRAINT-METHOD MAX COVERAGE FORMULATION

IVariable IActivity ICost IVariable IActivity ICost I

I X614 0.0000 0.000 I X615 0.0000 0.0000 I

1 X718 0.0000 0.00001I X717 0.0000 0.00001

1 X718 0.0000 0.00001I X816 1.0000 0.00001

1 X817 1.0000 0.00001I X818 1.0000 0.00001

I X916 0.0000 0.0000 I X917 0.0000 0.0000 I------------------
I X916 0.0000 0.00001I X017 0.0000 0.00001

I X258 1.0000 0.00001I X14 0.0000 0.00001

I X25 0.0000 0.00001I X56 1.0000 0.00001

I X47 0.0000 0.00001I X1OT 1.0000 0.00001

I X11T 1.0000 0.00001I X12T 1.0000 0.0000 I

File: MAXCON 11/25/90 17:15:06 Page 1-3
SOLUTION (Maximized): 58.0000 CONSTRAINT-METHOD MAX COVERAGE FORMULATION

I Variable IActivity I Cost IVariable IActivity ICost I
I X1ST 1.0000 0.0000 I X14T 1.0000 0.0000-------------------

I X13T 1.0000 0.00001I X14T 1.0000 0.00001

I X17T 1.0000 0.00001I X18T 1.0000 0.00001
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I p 1.0000 0.0000 1 F2 13.5560 0.0000 I

File: MAXCON 11/25/90 17:15:06 Page 1-4
CONST11AINTS: CONSTRAINT-METHOD MAX COVERAGE FORMULATION

IConstraintI Activity I RHS IConstrainti Activity IRHS I

I OBJl 0.0000 = 0.00001 O BJ2 0.0000 = 0.00001I

I SATISFIC 13.5560 < 13.55601I NODE S 0.0000 = 0.00001

-- NODE- 1--0.0000=----0.00001---NODE--2 --0.0000=---0.0000--1

INODE S 0.0000= 0.00001 NODE 4 0.0000 = 0.0000 1

---NODE-- 5-0.0000=----0.OOO-----NODE--6 --0.0000= 0.00001----

I NODE 7 0.0000 = 0.0000 1 NODE 4 0.0000 = 0.00001I

I NODE g 0.0000 = 0.0000 NODE 10 0.0000 = 0.0000--------------

I NODE 51 0.0000 = 0.OOO I NODE 12 0.0000 = 0.00001

-I NODE- 13 0.0000 =-----0.0000 NODE- 14 0.0000---- = -0.0000 -

I NODE 15 0.0000 = 0.0000 1NODE 16 0.0000 = 0.00001

I NODE 17 0.0000 = 0.0000 1NODE 18 0.0000 = 0.00001

I NODE T1 0.0000 = 0.0000 Ro ND2 1.0000 = .00001

I ROwE 33 0.0000 = 0.0000 1 RO E 34 0.0000 = 0.00001

I ROwE 36 0.0000 = 0.0000 1 RO E 36 0.0000 = 0.00001

File: MAXCON 11/25/90 17:15:06 Page 1-6

CONSTRAINTS: CONSTRAINT-METHOD MAX COVERAGE FORMULATION

iConstrainti Activity IRHS IConstrainti Activity I RHS

I NODE 41 0.0000 = 0.0000 I Row 4 0.0000 = 0.00001

I Row 43 0.0000 = 0.0000 I Row 26 0.0000 = 0.00001

-- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- - -- -- -- ---23 3-- -



I Row 45 0,0000 = 0.0000O1Row 48 0.0000 = 0.00001

I.......ow 47 0 .................0000 0.OOOI. 48 0.000= 00000

IRow 49 0.0000 = 0.0000I1Row 40 0.0000 = 0.00001
I--ow 51---0.0000= 0.OO-----0I--ow --52 0.0000=-----0.00001 --

I Row 53 0.0000 = 0.0000O1Row 54 0.0000 = 0.00001

I--ow--55--0.0000=- 0.OO------I-ow 56 0.0000=-- 0.00001-----

I Row 51 0.0000 = 0.0000 1Row 58 0.0000 = 0.00001

I Row 59 0.0000 = 0.0000I1Row 80 0.0000 = 0.00001I

I Row 61 0.0000 = 0.0000 1Row 56 0.000 0.00001

I Row 67 0.0000 = 0.0000 1Row 68 0.0000 = 0.00001

I Row 73 0.0000 = 0.0000 1 Row 74 0.0000 = 0.00001

Tole Erro 0.000000.1:0 Pge1-

CONTRINT: ONSRANT-ETODMAXCOERAE OR234IO



Appendix T: Constraint-Method Set Covering

M1P83 P.LP output p.out

Copyright (C) 1986 by Sunset Software.
All Rights Reserved Worldwide.
1613 Chelsea Road, Suite 153
San Marino, California 91108 U.S.A.

Licensed Solely To: Wright-Patteison Air Force Base

..TITLE
CONSTRAINT METHOD SET COVERING FORMULATION (d=2)

..OBJECTIVE MINIMIZE
I Fl

*source connectors

+ 0 [[XSIJ] + 0 [[XS2]] + 0 [[XS3]]
*state I
+OXIIO+OX111 +0X112
+0X210+ 0X211 +0X212
+0X310+ 0 X311 +0X312
*state 2
+ 0 X413 + 0 X414 + 0 X415
+ 0 X513 + 0 X514 + 0 X515
+ 0 X613 + 0 X614 + 0 X615
*state 3
+ 0 X716 + 0 X717 + 0 X718
+ 0 X816 + 0 X817 + 0 X818
+ 0 X916 + 0 X917 + 0 X918
*interstate links
+ 0 X14 + 0 X25 + 0 X36
+ 0 X47 + 0 X58 + 0 X69
*demand-sink connectors
+0 XIOT +0 XI1T +0 X12T
+0 X13T +0 XI4T +0 X15T
+0 X16T +0 XI7T +0 XI8T
*excess-sink connectors
- 0XIOTE - 0XIITE - 0X12TE
- 0 X13TE - 0 XI4TE - 0 XI5TE
- 0XI6TE - 0X17TE - 0X18TE
*variance criterion function
+ 0 F2

..BOUNDS
*demand for mission I (nodes 10, 13, 16)
XIOT >= 2
XI3T >= 2
XI6T >= 2

*demand for mission 2 (nodes 11, 14, 17)
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XIIT >- 2
X14T >- 2
X17T >- 2

*demand for mission 3 (nodes 12, 15, 18)
XI2T >= 2
XI5T >- 2
XI8T >- 2

..CONSTRAINTS

OBJI:
1000 XSI + 1000 XS2 + 1000 XS3
-1 XOTE -1 X1ITE -1 X12TE
-I XI3TE -I XI4TE -I X15TE
- I XI6TE - 1 X17TE - I XI8TE
-Fl -0

OBJ2:
12.223 XSI + 13.556 XS7 + 11.111 XS3 - F2= 0

SATISFICE:

F2 <= 12.0884

NODE S: XSI + XS2 + XS3 >= I

NODE h:XIIO+XIII+XI12+XI4-4XSI=0

NODE 2: X210 + X211 + X212 + X25 -4 XS2 = 0

NODE 3: X310 + X311 + X312 + X36 -4 XS3 = 0

NODE 4: X413 + X414 + X415 + X47 -4 X14 = G

NODE 5: X513 + X514 + X515 + X58 -4 X25 = 0

NODE 6: X613 + X614 + X615 + X69-4 X36 = 0

NODE 7:X716 + X717 + X718 - 3 X47 = 0

NODE 8:X816+X817+X818-3X58=0

NODE 9:X916+X917+X918-3X69=0

NODE 10: XOT + XIOTE- 8 X110 - 3 X210 - 2 X310 = 0

NODE Il:XIIT+XIITE-5X111-6X211-7 X311 =0

NODE 12: XI2T + XI2TE - 4 X1 12 - 9 X212 - 5 X312 = 0

NODE 13: X13T + X13TE - 6 X413 - 9 X513 - 4 X613 = 0
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NODE 14: XI4T + X14TE - 2 X414 - 3 X514- 6 X614 = 0

NODE 15: X15T + XI5TE- 7 X415 - 6 X515 - 5 X615 = 0

NODE 16: X16T + XI6TE- 4 X716 - 6 X816 - 3 X916 - 0

NODE 17: XI7T + XI7TE - 8 X717 - 7 X817 - 9 X917 = 0

NODE 18: XI8T + XI8TE- 9 X718 - 9 X818 - 7 X918 = 0

NODE T:- XOT- XIIT- X12T
- XI3T - XI4T - XI5T
- X16T - X17T - X18T <= 0

NODE TE: - XI0TE - XI ITE - XI2TE
- X13TE - XI4TE - XI5TE
- X16TE - XI7TE - XI8TE <= 0

* equi-distribution of flow at each location

XIIO-XII =0
XIO - X112 = 0
XIII -X112=0
XIIO-XSI =0
XIO-X14 =0

X210-X211 =0
X210 - X212 = 0
X211 - X212 = 0

X210-XS2 =0
X210-X25 =0

X310 - X311 = 0
X310 - X312 = 0
X311 - X312 = 0
X310-XS3 =0
X310-X36 =0

X413 - X414 = 0
X413 - X415 = 0
X414 - X415 = 0
X413-X47 =0
X14 - X47 =0

X513 - X514 = 0
X513 - X515 = 0
X514 - X515 = 0
X513-X58 =0
X25 - X58 = 0
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X613 - X614 - 0
X613 - X615 - 0
X614 - X615 - 0
X613-X69 -0
X36 - X69 - 0

X716- X717 - 0
X716 - X718 - 0
X717 - X718 - 0
X716-X47 =0

X816 - X817 = 0
X816 - X818 - 0
X817 - X818 - 0
X816-X58 -0

X916 - X917 = 0
X916- X918 = 0
X917 - X918 = 0
X916-X69 =0

Statistics-
MIP83 Version 5.00a
Machine memory: 256K bytes.
Pagable memory: OK bytes.
Objective Function is MINIMIZED.
MIP Strategy: 1
Variables: 56
Integer: 3

Constraints: 66
3 LE, 62 EQ, 1 GE.

Non-zero LP elements: 210
Disk Space: OK bytes.
Page Space: 30K bytes.
Capacity: 15.5% used.
Estimated Time: 00:00:36

Iter 53
Solution Time: 00:00:03
*May have*ALTER NATE SOLUTION

Optimal Solution: 965.6052 Max Node Depth: 546 Limit: NONE

Solution: 970.0000 Iter: 3 Nodes: 2 Iteration Time: 00:00:01
INTEGER SOLUTION
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File: P 11/23/90 17:32:32 Pago 1-1

SOLUTION (Minimized): 970.0000 CONSTRAINT METHOD SET COVERING FORMULATION

IVariable I Activity ICost I Variable I Activity ICost I

I F1 970.0000 1.00001 XS1 0.0000 0.00001

I XS2 0.0000 0.00001I XSS 1.0000 0.00001I

-- X110 0.0000-------0.0000 -I Xlii - 0.0000---- 0.0000 ------

I X112 0.0000 0.0000 J X10 0.0000 0.00001

I X11 0.0000 0.00001 X210 0.0000 0.00001

I X211 0.0000 0.00001j X212 1.0000 0.00001

I X310 1.0000 0.00001j X311 0.0000 0.00001I

I X312 0.0000 0.0000 I X413 0.0000 0.00001

I X414 0.0000 0.00001j X45 0.0000 0.00001I

I X515 0.0000 0.00001 X613 1.0000 0.00001

File: P 11/23/ 90 17:32:32 Page 1-2
SOLUTION (Minimized): 970.0000 CONSTRAINT METHOD SET COVERING FORMULATION

IVariable IActivity ICost IVariable IActivity ICost I

I X614 1.0000 0.00001 X615 1.0000 0.00001

X716 0.0000 0.0000 I X717 0.0000 0.0000 I-------------------
I X716 0.0000 0.00001I X717 0.0000 0.00001

--- X------0.0000----0.0000 ------X8 --8 --0.0000 -- 0.0000 -- --I
I X718 1.0000 0.00001 X816 1.0000 0.00001

1 X817 0.0000 0.00001 X818 0.0000 0.00001

I X6 1.0000 0.00001 X17T 2.0000 0.00001

I X918 .0000 0.00001I X14T .0000 0.00001

SOUTO (Minimied):00.0000 CONTRIN METHOD SE0CVEIN0FRMLAIO

aIal Actvit 0.00 Cost00 X5 V0riabl Actvit 0Cot1

I X6ST 1.0000 .000 I X1T 2.0000 0.00001I

I X11T 2.0000 0.00001 X12T 2.0000 0.00001

-- -- -- - -- -- -- - -- -- - -- -- -- - -- -- -- - -- -- - -- ---239- -- -



I X17T 2.0000 0.00001I XI8T 2.0000 0.00001

IX10TE 0.0000 0.0000 1X11TE 5.0000 0.00001

XI2TE 3.0000 0.00001 XISTB 2.0000 0.00001-------------------

I X12TE 3.0000 0.0000 1X13TE 2.0000 0.00001

I X14TE 1.0000 0.0000 1 X15TE 3.0000 0.0000I

I X18TE 5.0000 0.00001I F2 11.1110 0.00001I

File: P 11/23/90 17:32:32 Page 1-4
CONSTRAINTS: CONSTRAINT METHOD SET COVERING FORMULATION (d=2)

IConstraintl Activity I RHS lConstraintl Activity I RHS I

I OBJi 0.0000 = 0.00001I OB32 0.0000 = 0.00001I

I SATISFIC 11.1110 < 12.08841I NODE S 1.0000 > 1.00001

... NODE. 1 .. 0 ..000 .0000 I NODE 2 0........0000 = 0.00001 .

I NODE S 0.0000 = 0.0000 1 NODE 4 0.0000 = 0.00001

---NODE--5 0.0000= 0.0000 I-- NODE- 6-----0.0000=---0.0000---I

INODE 7 0.0000 = 0.0000 1 NODE 8 0.0D000= 0.00001

---NODE 9 0.0000= 0.00001-- NODE 10 0.0000=----------0.00001--

I NODE 15 0.0000 = 0.0000 1 NODE 12 0.0000 = 0.00001

-I-NODE--13 0.0000= 0.00001 NODE 14-- 0.0000 = 0.00001---------

I NODE 15 0.0000 = 0.0000 1 NODE 16 0.0000 = 0.0000 I

I NODE 17 0.0000 = 0.0000 1 NODE 18 0.0000 = 0.00001I

I NODE T1 01.0000 = 0.0000 I NODE 1E -0.0000 = 0.0000

I RODE 25 0.0000 = 0.0000 Ro 26D 1 0.00 = 0.00001

I ROE 27 0.0000 = 0.0000 1 RODE 28 0.000 = 0.000 I

Rowe 31 0110/2.00 Rw32 000 17323 Page 000

Ro 35D 1 0.0000 = 0.0000 Ro 36D 1 0.0000 = 0.00001

-- -- -- -- -- -- -- -- - -- -- -- -- -- -- -- -- - -- -- -- ---24 0-- -



I--ow S-T- 0.0000= 0.OOOOI------ow --38 --0.0000=----0.0000, --

IRow 37 0.0000 = 0.0000 1Row 40 0.0000 = 0.00001

File: P 11/23/90 17:32:32 Page 1-6
CONSTRAINTS: CONSTRAINT METHOD SET COVERING FORMULATION (d=2)

IConstraintl Activity I RHS IConstruinti Activity I RHS I
Row 41 0.0000 = 0.0000 Row 42 0.0000 = 0.0000---------------

I Row 41 0.0000 = 0.0000 1 Row 44 0.0000 = 0.00001

I---w--45--0.0000= 0.OOOOI------ow 46 0.0000=- 0.0000-1-----
I Row 43 0.0000 = 0.0000 1Row 48 0.0000 = 0.00001

i--o---49--0.0000=----0-.OO------o ---50 --0.0000=-- 0.0000 ----

IRow 45 0.0000 = 0.0000 1Row 42 0.0000 = 0.00001I

IRow 53 0.0000 = 0.0000 1Row 48 0.0000 = 0.00001

I--ow 55- 0.0000= 0----.OOO---l-ow 66 0.0000=------0--fl000 --

I Row 57 0.0000 = 0.0000 1Row 58 0.0000 = 0.00001

IRow 59 0.0000 = 0.0000 1Row 60 0.0000 = 0.00001

IRow 61 0.0000 = 0.0000 1 Row 62 0.0000 = 0.00001I

IRow 67 0.0000 = 0.0000 1 Row 64 0.0000 = 0.00001

I Row 65 0.0000 = 0.0000O1Row 66 0.0000 = 0.00001
Total Error: 0.000000 ---------------------------

File: P11/23/917:32:24g1-



Appendix U: GEODSS Optimal Location Solver

* GEODSS OPTIMAL LOCATION SOLVER *

* Programmer: Maj Pierre Forgucs
* Date : January 1991
,

* Purpose : Prioritize one-site, two-site, three-site
* choice for locating GEODSS given a set of
* 12 candidate locations and 6 satellites

* Algorithm : This muiticriteria decision making problem
* involves two objectives: maximize the number
* of observations and minimize the variance
* in the number of observations collected on
* each satellite. This ensures that each
* orbit is covered equally well.
,

* The value of each of the above objectives is
* calculated for each feasible alternative for
* each month of the year. The alternatives are
* ranked based on the deviation from the ideal.
,

* Variables : Reals -
* PROB : probability of observing
* BLOCKS : number of 5 mins blocks
* EXPECT : expected value of useable blocks
* OBJI : value of objective I (max obs)
* OBJ2 : value of objective 2 (min var)
* ONEDEV :deviation from ideal (p=l)
* TWODEV : deviation from ideal (p=2)
* TREDEV : deviation from ideal (p=3)
* IDLPI : y-space coord of ideal (p=l)
* IDLP2 : y-space coord of ideal (p=2)
* IDLP3 : y-space coord of ideal (p=3)
* - Logicals -
* FEASIB : record of feasibility
* NSET : record of N-points
* - Integers -

* ONEPRM : permutation vector (p=l)
* TWOPRM : permutation vector (p=2)
* TREPRM permutation vector (p=3)
* FEAI : no. of feasible p=l alt.
* FEA2 : no. of feasible p=2 alt.
* FEA3 : no. of feasible p=3 alt.
* EFFI : no. in N-set for p=I
* EFF2 : no. in N-set for p=2
* EFF3 • no. in N-set for p=3

* Subprograms:
* PROCAL - returns values of PROB(I,J,K)
* EXPVAL - returns values of EXPECT(I,J,K)
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* FEACHK - identifies feasible alternatives
*OBJCAL - returns values of OBJ I and OBJ2
* IDLCAL - returns values of IDLPI/2/3
* EFFSET -identifies set of N-points
* DEYCAL - computes deviations from ideal
* PRIORI -prioritizes alternatives
* PRTOUT - prints results
* UTILS - convert to utils

C
C MAIN PROGRAM BEGINS HERE
C

C
C Variable Declarations
C
C

REAL*8 PROB( 12,1 2,6),BLOCKS(1I2),EXPECT( 12,12,6)

REAL*8 OBJI(298),OBJ2(298)

REAL*8 IDLP1(2),IDLP2(2),IDLP3(2)

REAL*8 ONEDEV(1I2),TWODEV(66),TREDEV(220)

INTEGER ONEPRM( 12),TWOPRM(66),TREPRM(220)

INTEGER FEA 1,FEA2,FEA3,EFF1,EFF2,EFF3

LOGICAL FEASIB(298),NSET(298)
C
C
C Compute total number of 5 minute blocks for each month
C
C

BLOCKS(l) = (31.)*(24.)(60.)/(5.)
BLOCKS(2) = (28.)*(24.y)*(6O.)/(5.)
BLOCKS(3) = (3 1.)*'(24.)*'(6O.)/(5.)
BLOCKS(4) = (30.)*(24.)(60.)/(5.)
BLOCKS(5) = (3 1.)*(24.)*(6O.)/(5.)
BLOCKS(6) = (30.)*(24.)*(60.)/(5.)
BLOCKS(7) = (3 1.)*(24.)(60.)/(5.)
BLOCKS(8) = (3 1.)*(24)*(60)/(5.)
BLOCKS(9) = (30.)*(24.)*(60.)/(5.)
BLOCKS( 10) = (31.)*(24)*(60)/(5.)
BLOCKS(I 1) = (30.)*(24.)*(60)/(5.)
BLOCKS(12) = (31.)*I(24.)*(60.)/(5.)

C
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C
C Compute probability of observable blocks at location
C I, in month J, for satellite K
C
C

CALL PROCAL(PROB)

C
C
C Compute expected value of the number of useable
C blocks at location I, in month J, for satellite K
C
C

CALL EXPVAL(EXPECT,BLOCKS,PROB)

C
C
C Determine feasibility of all possible alternatives
C for the p-1,2, and 3 problems
C
C

CALL FEACHK(EXPECT,FEASIB,FEA 1,FEA2,FEA3)

C
C
C For each feasible alternatives, compute the value
C of each objective function
C
C

CALL OBJCAL(EXPECT,FEASIB,OBJ I,OBJ2)

C
C
C Determine which alternatives are non-dominated
C (i.e. generate the set of efficient solutions)
C
C

CALL EFFSET(FEASIB,OBJI,OBJ2,NSET,EFFI,EFF2,EFF3)

C
C
C Determine Y-space coordinates of ideal solution
C
C

CALL IDLCAL(OBJI,OBJ2,IDLPI,IDLP2,IDLP3)
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C
C
C Convert OBJI and OBJ2 to utils
C
C

CALL UTILS(OBJ I,OBJ2,FEASIB)

C
C
C Compute deviation from ideal for feasible points
C
C

CALL DEVCAL(OBJI,OBJ2,FEASIB,
+ ONEDEV,TWODEV,TREDEV)

C
C
C Rank alternatives for the p-1,2, and 3 problems
C according to minimum deviation from ideal
C
C

CALL PRIORI(ONEDEV,TWODEV,TREDEV,ONEPRM,TWOPRM,TREPRM)

C
C
C Print out results in file 'RESULTS.OUT'
C
C

CALL PRTOUT(EXPECT,OBJ I,OBJ2,ONEDEV,TWODEV,TREDEV,
+ ONEPRM,TWOPRM,TREPRM,IDLP I,IDLP2,IDLP3,
+ FEA I,FEA2,FEA3,EFFI,EFF2,EFF3)

END

C
C MAIN PROGRAM ENDS HERE
C

* SUBPROGRAM PROCAL

* Purpose : Read probability input data and compute
* PROB(I,J,K), the probability a 5 mins block
* is useful for observing satellite K, at
* location I, in month J.
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* Variables: - Reals -
* PROB : as described above
* PROBA: probability event A will occur
* PROBB: event B " H

* PROBD: H event D
* PROBE: " eventE " H

* PROBF: " eventF 
* PROBG: eventG "
* - Integers -
* I : loop couater (location number)
* J : (month number)

$ K : H (satellite number)
* -Characters -
* HEADER: table header string used to
* separate tables in data files
* PROBEDAT, PROBF.DAT, PROBG.DAT
,

* Events : A. The sun is a least 6 deg below horizon
* B. Surface wind speeds are less than 25 kts
* C. Temperature is warmer than -50C
* D. Satellite is at least 15 deg above horizon

E. Five minute CFLOS
* F. Satellite is illuminated

SUBROUTINE PROCAL(PROB)

REAL*8 PROB(12,12,6)
REAL*8 PROBA(I 2,12),PROBB( 12,12),PROBD(12,6)
REAL*8 PROBE(12,12,6),PROBF(12,12,6),PROBC(12,12)
INTEGER I,J,K
CHARACTER*80 HEADER

OPEN (UNIT= 1 0,FILE='PROBA.DAT',STATUS='OLD')
OPEN (UNIT=20,FILE='PROBB.DAT',STATUS='OLD')
OPEN (UNIT=30,FILE='PROBD.DAT',STATUS='OLD')
OPEN (UNIT=40,FILE='PROBE.DAT',STATUS='OLD')
OPEN (UNIT=50,FILE='PROBF.DAT',STATUS='OLD')
OPEN (UNIT=60,FILE='PROBC.DAT',STATUS='OLD')

C Read PROBA.DAT, PROBB.DAT, and PROBC.DAT files

DO 1000 1=1,12

READ(10,1600) (PROBA(I,J),J=I,12)
READ(20,1600) (PROBB(I,J),J=1,12)
READ(60,1600) (PROBC(I,J),J=1,12)

1000 CONTINUE
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C Read PROBD.DAT file

DO 1100 1-1,12

READ(30,1600) (PROBD(I,K),K-1,6)

1100 CONTINUE

C Read PROBE.DAT file, beginning with first HEADER

READ(40,'(A80)') HEADER

DO 1300 K-1,6
DO 1200 1-1,12

READ(40,1600) (PROBE(I,J,K),J.1,12)

1200 CONTINUE

READ(40,'(A80)') HEADER

1300 CONTINUE

C Read PROBF.DAT beginning with header

READ(50,'(A80)') HEADER

DO 1500 K-1,6
DO 1400 I= 1,12

READ(50,1600) (PROBF(I,J,K),J=l1l2)

1400 CONTINUE

READ(50,'(A80)') HEADER

1500 CONTINUE

1600 FORMAT (12F4.2)

C
C
C Compute the probability, PROB(I,J,K), a given
C 5 min block is useable for observation purposes
C
C

DO 2000 I= 1,12
DO 1900 J=1,12

DO 1800 K=1,6

PROB(I,J,K)=PROBA(I,J)*PROBB(I,J)*PROBD(I,K)*
+ PROBE(I,J,K)*PROBF(I,J,K)*
+ PROBC(IJ)
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1800 CONTINUE
1900 CONTINUE
2000 CONTINUE

CLOSE(10)
CLOSE(20)
CLOSE(30)
CLOSE(40)
CLOSE(50)
CLOSE(60)

RETURN

END

* SUBPROGRAM EXPVAL
****************************** ******* ***** ** * *

* Purpose : Compute the expected value of the number
* of useable 5 mins blocks to observe satellite
* K, at location I, in month J. A block is
* considered "useable" when all conditions
* necessary for observation are met.

* Variables: - Reals -
* EXPECT: expected value
* BLOCKS: total number of 5 mins blocks
* PROB : probability a block is useable

* - Integers -
* I : loop counter (location number)
* J : (month number)

* K : " " (satellite number)

SUBROUTINE EXPVAL(EXPECT,BLOCKS,PROB)

REAL*8 EXPECT(12,12,6),BLOCKS(12),PROB(12,12,6)
INTEGER I,J,K

DO 1900 1=1,12
DO 1800 J=l,12

DO 1700 K=1,6

EXPECT(I,J,K) = (PROB(I,J,K)) * (BLOCKS(J))

1700 CONTINUE
1800 CONTINUE
1900 CONTINUE
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RETURN

END

* SUBPROGRAM FEACHK

* Purpose : Determine which alternatives are feasible

* Variables: - Reals -
* EXPECT: expected value (number of blocks)
* OBSREQ: monthly observation requirement
* OBS : observations for alternative X
* in month J on satellite K
* -Integers -
* I : loop counter (location number)
* J : ( "(month number)
* K : " " (satellite number)
* X : alternative number
* SITEI : "
* SITE2: "
* SITE3 : "
* FEAI no. of feasible p=l alternatives
* FEA2 no. of feasible p=2 alternatives
* FEA3 : no. of feasible p=3 alternatives
* - Logicals -
* FEASIB: feasibility record

SUBROUTINE FEACHK(EXPECT,FEASIB,FEA I,FEA2,FEA3)

REAL*8 EXPECT( 12,12,6),OBSREQ(6),OBS(298,13,6)

INTEGER I,J,K,X,SITEI,SITE2,SITE3

INTEGER FEA I,FEA2,FEA3

LOGICAL FEASIB(298)
C
C
C Read monthly observation requirement for each satcl
C lite
C
C

OPEN (UNIT=70,FILE='OBSREQ.DAT',STATUS='OLD')
READ (70,2000) (OBSREQ(K),K=I,6)

2000 FORMAT (6F5.0)
CLOSE(70)

C
C
C Initialize the FEASIB vector
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C
C

DO 2001 X=1,298
FEASIB(X)=.TRUE.

2001 CONTINUE

C
C
C Perform feasibility check for p=l alternatives
C
C

DO 2100 K-1,6
DO 2090 1-1,12

DO 2080 J-1,12

OBS(I,J,K)=EXPECT(14J,K)
IF (OBS(I,J,K).LT.OBSREQ(K))

+ FEASIB(I)--.FALSE.

2080 CONTINUE
2090 CONTINUE
2100 CONTINUE

C
C
C Perform feasibility check for p=2 alternatives
C
C

DO 2200 K=1,6

X= 12

DO 2190 SITE I =1,11
DO 2180 SITE2=(SITE1I+ 1), 12

x=x+1I

DO 2170 J=1,12

OBS(X,J,K)=EXPECT(SITE I,J,K)i
+ EXPECT(SITE2,J,K)

IF (OBS(X,J,K).LT.OBSREQ(K))
+ FEASIB(X)=.FALSE.

2170 CONTINUE
2180 CONTINUE
2190 CONTINUE
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2200 CONTINUE

C
C
C Perform feasibility check for p=3 alternatives
C
C

DO 2300 K-1,6

X-78

DO 2290 SITE I -1,l10
DO 2280 SITE2-(SITE I +1), 11

DO 2270 SITE3u(SlTE2+1),12

x-x+1

DO 2260 J-1,12

OBS(X,J,K)mEXPECT(SITE I,J,K)+
+ EXPECT(SITE2,J,K)+
+ EXPECT(SITE3,J,K)

IF (OBS(X,J,K).LT.OBSREQ(K))
+ FEASIB(X)-.FALSE.

2260 CONTINUE
2270 CONTINUE
2280 CONTINUE
2290 CONTINUE
2300 CONTINUE

C
C
C Print OBS(X,J,K) to file
C
C

OPEN(UNIT=9 I ,FILE='ALTOBS.OUT',STATUS='NEW')
DO 2305 K=1,6

WRITE(9 I *)
WRITE(91,'(lX,A,I2)') ('OBSERVATIONS ON SATNO= ',K)
WRITE(9 l ,'(1I X,A)') 'ALTERNATIVES (ROWS) MONTHS

+ (COLS)'
WRITE(91l,'(1IX,A)') '(ALT NO IN LAST COLUMN)'
WR ITE(91I,*)

DO 2304 X=I,298



OBS(X,13,K)-DBLE(X)
WRITE(9 l,'(1 3(F6.0))') (OBS(X,J,K),J- 1, 13)

2304 CONTINUE
2305 CONTINUE

C
C
C Print FEASIB(X) to file
C
C

OPEN(UNIT-93,FILE'FEASIB.OUT',STATUS='NEW')
WRITE(93,*)
WRITE(93,'(1 X,A)') 'FEASIBILITY LIST'

DO 2306 J-1,295,5
WRITE(93,'(5(3X,15,L3))')((X,FEASIB(X)),X=J,J+4)

2306 CONTINUE
WRITE(93,'(3(3X,15,L3))')((X,FEASIB(X)),X=296,298)

CLOSE(91)
CLOSE(93)

C
C
C Count number of feasible alternatives
C
C

FEA1=0
FEA2=0
FEA3=0

DO 2400 X=1,12
IF (FEASIB(X)) FEAI=FEA I+I1

2400 CONTINUE

DO 2500 X=13,78
IF (FEASIB(X)) FEA2=FEA2+I

2500 CONTINUE

DO 2600 X=79,298
IF (FEASIB(X)) FEA3=FEA3+1

2600 CONTINUE

RETURN
END

* SUBPROGRAM OBJCAL
***** ** * * * ** * **************** ** ***************** ** *

* Purpose Calculate the value of both objective

252



* functions for all feasible alternatives
,

* Variables: -Reals -
* EXPECT: expected value (number of blocks)
* OBJI : value of first objective function
* where OBJl(X) is the total number
* of observations collected on all
* satellites by alternative X
* summed
* over all months
* OBJ2 : value of second objective func
* tion
* where OBJ2(X) is the sum over all
* months of the monthly variance in
* the number of observations col
* lected

* on each satellite
* MEAN : mean number of observations
* SUMDEV: sum of squared deviation from
* mean
* MONTH: observations in current month
,

* - Integers -
* I : loop counter (location number)
* J : " (month number)
* K : " " (satellite number)
* X : alternative number
* SITE1: "
* SITE2: "
* SITE3: "
* - Logicals -
* FEASIB: feasibility record

SUBROUTINE OBJCAL(EXPECT,FEASIB,OBJ I,OBJ2)

REAL*8 OBJ I(298),OBJ2(298),EXPECT(1 2,12,6)

REAL*8 MEAN,SUMDEV,MONTH

INTEGER I,J,K,X,SITE I,SITE2,SITE3

LOGICAL FEASIB(298)

C
C
C Perform computations for p=l alternatives
C
C

X=o
DO 3100 1=1,12
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x-x+1
OBJl1(X)=0
OBJ2(X)=0

IF (.NOT.FEASIB(X)) THEN

OBJ2(X)= 1.0D20
GO TO 3090

END IF

DO 3080 J-1,12

C Set current month observation total to zero
MONTH=0

DO 3060 K=1,6

MONTH=MONTH+EXPECT(I,J,K)

3059 FORMAT(3(1X,A,13),2(1X,A,F10.0))

3060 CONTINUE

OBJI1(X)=OBJ I(X)+MONTH
MEAN=MONTH/6
SUMDEV=0

DO 3070 K-1,6

SUMDEV=SUMDEV+((EXPECT(I,J,K)-MEAN)**2)

3069 FORMAT( 1 X,3( I X,A,12),2( 1 X,A,F 10.0))

3070 CONTINUE

OBJ2(X)=OBJ2(X)+(SUMDEV/6)

3080 CONTINUE
3090 CONTINUE
3100 CONTINUE

C
C
C Perform computations for p=2 alternatives
C
C

X= 12
DO 3200 SITE I=I1,11
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DO 3190 SITE2-(SITE I+ 1), 12

x-x+ I
OBJI1(X)=0
OBJ2(X)=0

IF (.NOT.FEASIB(X)) THEN

OBJ-2(X)= 1.0D20
GO TO 3180

END IF

DO 3170 3=1,12

MONTH=0

DO 3150 K=1,6

MONTH=MONTH+EXPECT(SITE I,J,K)
+ +EXPECT(SITE2,J,K)

3150 CONTINUE

OBJI1(X)=OBJI1(X)+MONTH
MEAN=MONTH/6
SUMDEV=0

DO 3160 K=1,6

SUMDEV=SUMDEV+((EXPECT(SITEI1,J,K)
+ +EXPECT(SITE2,J,K)-MEAN)**2)

3160 CONTINUE

OBJ2(X)=OBJ2(X)+(SUMDEV/6)

3170 CONTINUE
3180 CONTINUE
3190 CONTINUE
3200 CONTINUE

C
C
C Perform computations for p=3 alternatives
C
C

X=78
DO 3300 SITE1=1,I0

DO 3290 SITE2=(SITE I+ 1), 11
DO 3280 SITE3=(SITE2+1),12

255



Xu'X+1
OBJ I(X)m0
OBJ2(X)=0

IF (.NOT.FEASIB(X)) THEN

OBJ2(X)= I.0D20
GO TO 3270

END IF

DO 3260 J=1,12

MONTH=0

DO 3240 K=1,6

MONTH=MONTH+EXPECT(SITE I,J,K)
+ +EXPECT(SITE2,J,K)+EXPECT(SITE3,J,K)

3240 CONTINUE

OBJ I(X)=OBJI1(X)+MONTH
MEAN=MONTH/6
SUMDEV=0

DO 3250 K=1,6

SUMDEV=SUMDEV+((EXPECT(SITE 1 ,J,K)
+ +EXPECT(SITE2,J,K)
+ +EXPECT(SITE3,J,K).MEAN)**2)

3250 CONTINUE

OBJ2(X)=0BJ2(X)+(SUMDEV/6)

3260 CONTINUE
3270 CONTINUE
3280 CONTINUE
3290 CONTINUE
3300 CONTINUTE

C Print OBJ I(X) and OBJ2(X) to file

OPEN(UNIT=92,FILE='OBJFCN.OUT',STATUS='NEW')
WRITE(92,'(I X,A)') 'OBJECTIVE FUNCTION VALUES'
WRITE(92,3301) 'ALT NO','OBJI','OBJ2'

3301 FORMAT(1X,A,6X,A,9X,A)

DO 3303 X=1,298
WRITE(92,3302) (X,OBJ I (X),OBJ2(X))

3302 FORMAT(I X,14,3X,D 12.6,1lX,D 12.6)
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3303 CONTINUE

CLOSE(92)

RETURN

END

* SUBPROGRAM EFFSET

*Purpose : Determine which alternatives are
* non-dominated

* Variables: - Reals -

* EXPECT: expected value (number of blocks)
*OBJ I value of first objective function
* OBJ2 :value of second objective func

* tion
* - Integers -

SI: loop counter (location number)
* J :" (month number)
* K :" "(satellite number)
*X alternative number
*EFFi no. of alt in N-set p=1
* EFF2 :no. of alt in N-set p=2
*EFF3 no. of alt in N-set p=3
* - Logicals -

* FEASIB: feasibility record
* NSET :N-point record

SUBROUTINE EFFSET(FEASIB,OBJ 1,OBJ2,NSET,

+ EFFI,EFF2,EFF3)

REAL*8 OBJI(298),OBJ2(298)

INTEGER 1,J,K,X,EFFI,EFF2,EFF3

LOGICAL FEASIB(298),NSET(298)

C
C
C Initialize the NSET vector
C
C

DO 4100 X=1,298
NSET(X)=.TRUE.

4100 CONTINUE

C
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C
C Determine NSET for p- I problem
C
C

DO 4200 X-1,12

IF (.NOT.FEASIB(X)) THEN
NSET(X)=.FALSE.
GO TO 4190

END IF

1-1

........... ........... .......... ........... ..........

*Repeat Until Structure Begins Here

4180 CONTINUE

* Check dominance against all other feasible alterna
* tives

IF((I.NE.X).AND.(FEASIB(I))) THEN

Ii;( OBJ 1 (I).GE.OBJ I (X)).AND.
" (OBJ2(I).LE.OBJ2(X)))
" NSET(X)=.FALSE.

END IF

I=I+ I

IF(NSET(X).AND.(I.LE. 12)) GO TO 4180

*Repeat Until Structure Ends Here... Next Statement is
*reached when either NSET(X)=.FALSE. or when 1=13
........... ........... .......... ........... ..........

4190 CONTINUE
4200 CONTINUE

C
C
C Determine NSET for p=2 problem
C
C

DO 4300 X=13,78

IF (.NOT.FEASIB(X)) THEN
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NSET(X)=.FALSE.
GO TO 4290

END IF

1-13

........... ........... .......... ........... ..........

* Repeat Until Structure Begins Here

4280 CONTINUE

* Check dominance against all other feasible alterna
* tives

IF((L.NE.X).AND.(FEASIB(I))) THEN

IF((OBJ1(I).GE.OBJ l(X)).AND.
" (OBJ2(I).LE.OBJ2(X)))
" NSET(X)--.FALSE.

END IF

1=1+1

IF(NSET(X).AND.(I.LE.78)) GO TO 4280

*Repeat Until Structure Ends Here... Next Statement is
*reached when either NSET(X)=.FALSE. or when 1=79
........... ........... .......... ........... ..........

4290 CONTINUE
4300 CONTINUE

C
C
C Determine NSET for p=3 problem
C
C

DO 4400 X=79,298

IF (.NOT.FEASIB(X)) THEN
NSET(X)=.FALSE.
'130 TO 4390

END IF

1=79

----------------------------------------------------

*Repeat Until Structure Begins Here
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4380 CONTINUE

* Check dominance against all other feasible alterna
* tives

IF((I.NE.X).AND.(FEASIB(I))) THEN

IF((OBJ l(I).GE.OBJI(X)).AND.
" (OBJ2(I).LE.OBJ2(X)))
" NSET(X)=.FALSE.

END IF

1=1+1

IF(NSET(X).AND.(I.LE.298)) GO TO 4380

*Repeat Until Structure Ends Here... Next Statement is
*reached when either NSET(X)=.FALSE. or when 1=299
........... ........... .......... ........... ..........

4390 CONTINUE
4400 CONTINUE

C
C
C Print NSET(X) to file
C
C

OPEN(UNIT=94,FILE='EFFSET.OUT',STATUS='NEW')
WRITE(94,*)
WRITE(94,'( I X,A)') 'EFFICIENT SET'

DO 4405 J=1,295,5
WRITE(94,'(5(3X,15,L3))')((X,NSET(X)),X=J,J+4)

4405 CONTINUE
WRITE(94,'(3(3X,15,L3))')((X,NSET(X)),X=296,298)

CLOSE(94)

C
C
C Count number of efficient alternatives
C
C

EFF 1 =0
EFF2=0
EFF3=0

DO 4500 X=1,12
IF (NSET(X)) EFF I=EFFlI+ 1

4500 CONTINUE

260



DO 4600 X-13,78
IF (NSET(X)) EFF2=EFF2+1

4600 CONTINUE

DO 4700 X-79,298
IF (NSET(X)) EFF3-EFF3+I

4700 CONTINUE

RETURN

END

* SUBPROGRAM IDLCAL

* Purpose : Determine ideal solutions
,

* Variables: - Reals -
* OBJI : value of first objective func
* tion
* OBJ2 : value of second objective func
* tion
* P!OBJI: value of first objective (p=l)
* PIOBJ2: value of second objective (p=!)
* P2OBJI: value of first objective (p=2)
* P2OBJ2: value of second objective (p= 2 )
* P3OBJI: value of first objective (p=3)
* P3OBJ2: value of second objective (p=3)
* IDLPI : ideal solutions (p=l)
* IDLP2: ideal solutions (p=2)
* IDLP3 : ideal solutions (p=3)
* - Integers -

* I : loop counter
* PERM?,: vectors required by RSORT
,

* Subprograms:
* RSORT - subroutine to sort real array
* by algebraic value

SUBROUTINE IDLCAL(OBJ I,OBJ2,IDLP I,IDLP2,IDLP3)

REAL*8 OBJ1(298),OBJ2(298),IDLPI(2),IDLP2(2),IDLP3(2)

REAL*8 POBJ 1( 2),P IOBJ2(l 2),P2OBJ I (66),P2OBJ2(66)

REAL*8 P3OBJ 1 (220),P3OBJ2(220)

INTEGER 1, PERMl(12),PERM2(66),PERM3(220)
C
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C
C Extract values for P?OBJ? vectors from the
C OBJ I and OBJ2 vectors
C
C

DO 5000 1-1,12
P1 OBJ 1(I)mOBJ 1(I)
P1I OBJ2(I)=OB.12(I)*(- 1.)

5000 CONTINUE

DO 5100 1=1,66
P2OBJ 1(1).OBJ 1(1+12)
P2OBJ2(I)=OBJ2(I+ 1 2)*(- 1.)

5100 CONTINUE

DO 5200 1-1,220
P3OBJ I(I)-OBJ 1(1+78)
P3OBJ2(I)- OBJ2(I+78)*(- 1.)

5200 CONTINUE

CALL RSORT(12,P1OBJ1,PERMl)
CALL RSORT( 12,P IOBJ2,PERMI)
CALL RSORT(66,P2OBJ I,PERM2)
CALL RSORT(66,P2OBJ2,PERM2)
CALL RSORT(220,P3OBJ 1 ,PERM3)
CALL RSORT(220,P3OBJ2,PERM3)

IDLP1(1 )=P IOBJ 1(12)
IDLP 1 (2).P 1 OBJ2( 12)*(- 1.)
IDLP2( 1)=P2OBJ 1(66)
IDLP2(2)=P2OBJ2(66)*(. 1.)
IDLP3(1I)=P3OBJ 1 (220)
IDLP3(2)=P3OBJ2(220)*(- 1.)

RETURN

END

* SUBPROGRAM UTILS

*Purpos,. Convert OBJI and OBJ2 to utils

*Variables: - Reals -

*OBJ I: value of f irst objective f unc, ion
* OBJ2 :value of second objective func

* tion
* UTILk objective I in utils
* UTIL2; objective 2 ir utils
* LOW :lowest value of objcctivec?
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* HIGH :highest value of objective ?
* RANGE: range of values

* - Integers -

*I : loop counter
* PERM?: permutation vectors
* - Logicals -

* FEASIB: feasibility record
* FOUND: loop stopper

SUBROUTINE UTILS(OBJ I,OBJ2,FEASIB)

REAL*8 OBJ1(298),0BJ2(298)

REAL*8 LOW,HIGH,RANGE

LOGICAL FEASIB(2981,FOUND

REAL*8 Fl P1(1 2),F1 P2(66),F 1P3(220)

REAL*8 F2P 1 (12),F2P2(66),F2P3(220)

INTEGER I,PERMI (1 2),PERM4(66),PERM3(220)

C
C
C Load F?P? vectors (obj2 vectors multiplied by
C negative 1 because this objectve is being
C minimized)
C
C

DO 5300 1=1,12
Fl P1(I)=OBJ 1(I)
F2P 1 (I)=OBJ2(I)*(- 1.)
PERMi (I)= 1

5300 CONTINUE

DO 5301 1=1,66
F IP2(I)=OBJ 1(1+12)
F2P2(I)=OBJ2(I+ 1 2)*(- 1.)
PER M2(1)=I

5301 CONTINUE

DO 5302 1= 1,220
F IP3(1)=OBJ 1(1+78)
F2P3(1)=OBJ2(1+78)*(- 1.)
PERM3(1)=l

5302 CONTINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C C
C First, convert the OBJI vector to utils C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccCCCCC

CALL RSORT(12,F1P1,PERMl)
CALL RSORT(66,F 1P2,PERM2)
CALL RSORT(220,F IP3,PERM3)

*p~ipin~p ip~pp ~ p~pp=l=p~lplPCIPIPIpIPIp=p1
C
C Determine high and low values for objective
C function 1 of the p- I problem
C
C

* If highest value in vector is not feasible,
* then make following assignments and skip the
*DO WHILE block (recall that OBJ I=O for an
* infeasible alternative)

IF(.NOT.FEASIB(PERMl(12))) THEN

LOW =0.
GO TO 5310

END IF

-------------------------------------------------------

* DO WHILE structure begins here
* Finds first feasible value in vector FlPI

HIGH=FI1P1(12)
I=1
FOUND=.FALSE.

5305 CONTINUE

IF (FEASIB(PERMI(I))) THEN
LOW=OBJ Il(PERMl1(I))
FOUND=.TRUE.

ELSE
1=1+1

END IF

IF ((.NOT.FOUND).AND.(.LT. 12)) THEN
GO TO 5305

END IF

* Next statement is reached when LOW has been found
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* or when the ONLY feasible element in the vector
* is the last element

IF (.NOT.FOUND) LOW=0

5310 CONTINUE

* Convert p=l section of OBJI to utils (infeasible
* alternatives remain at zero by virtue of previous

assignments; a lone feasible alternative
* takes on a utility of 1)

RANGE-HIGH-LOW

DO 5315 1=1,12

IF(FEASIB(I)) THEN
OBJ I (I)=ABS(OBJ I (I)-LOW)/RANGE
END IF

5315 CONTINUE

*p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2=p=2

C
C Determine high and low values for objective
C function 1 of the p=2 problem
C
C

* If highest value in vector is not feasible,
* then make following assignments and skip the
* DO WHILE block (recall that OBJl=0 for an
* infeasible alternative)

IF(.NOT.FEASIB(PERM2(66)+ 12)) THEN

HIGH=l,
LOW =0.
GO TO 5325

END IF

--------------------------------------------------------

* DO WHILE structure beg;ns here
* Finds first feasible value in vector FIP2

IIIGH=FIP2(66)
1=1
FOUND=.FALSE.
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5320 CONTINUE

IF (FEASIB(PERM2(I)+12)) THEN
LOW=OBJ I (PERM2(I)+ 12)
FOUND=.TRUE.

ELSE
1=1+1I

END IF

IF ((.NOT.FOUND).AND.(I.LT.66)) THEN
GO TO 5320

END IF

$Next statement is reached when LOW has been found
* or when the ONLY feasible element in the vector
* is the last element

.........................................................

IF (.NOT.FOUND) LOW=0

5325 CONTINUJE

*Convert p=2 section of OBJlI to utiis (infeasible
* alternatives remain at zero by virtue of previous
* assignments; a lone feasible alternative
* takes on a utility of 1)

RANGE=HIGH-LOW

DO 5330 1=1,66

IF (FEASIB(I+ 12)) THEN
OBJI(I-i12)=ABS(OBJ 1+12)-LOW)/RANGE
END IF

5330 CONTINUE

* p3=p3=p3=p=3p3p=3=p=3=p=3=p=3p 3=p=3p=3p=3
C
C Determine high and low values for objective
C function 1 of the p=3 problem
C
C

* If highest value in vector is not feasible,
* then make following assignments and skip the
* DO WHILE block (recall that OBJI=0 for an
* infeasible alternative)

IF(.NOT.FEASIB(PERM3(220)+78)) THEN
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HIGH-I.
LOW -0.
GO TO 5340

END IF

* DO WHILE structure begins here
* Finds first feasible value in vector FIP3

HIGH-FlP3(220)
I-
FOUND-.FALSE.

5335 CONTINUE

IF (FEASIB(PERM3(I)+78)) THEN
LOW=OBJ 1 (PERM3(I)+78)
FOUND-.TRUE.

ELSE
l=I+1

END IF

IF ((.NOT.FOUND).AND.(I.LT.220)) THEN
GO TO 5335

END IF

* Next statement is reached when LOW has been found
* or when the ONLY feasible element in the vector
* is the last element
..........................................................

IF (.NOT.FOUND) LOW=O

5340 CONTINUE

* Convert p=3 section of OBJ1 to utils (infeasible
* alternatives remain at zero by virtue of previous
* assignments; a lone feasible alternative
* takes on a utility of 1)

RANGE=HIGH-LOW

DO 5345 1=1,220

IF (FEASIB(I+78)) THEN
OBJ 1 (I+78)=ABS(OBJ I (I+78 '-LOW)/RANGE
END IF

5345 CONTINUE
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc
C
C Next, convert the OBJ2 vector to utils
C
CCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCC

DO 5346 1=1,12
PERMI (I)=I

5346 CONTINUE

DO 5347 I=1,66
PERM2(I)=I

5347 CONTINUE

DO 5348 I= 1,220
PERM3(I)=I

5348 CONTINUE

CALL RSORT(12,F2P1,PERMI)
CALL RSORT(66,F2P2,PERM2)
CALL RSORT(220,F2P3,PERM3)

*P= I = =I==I==I=p I == P= p p p=p I pi 1P P P
C
C Determine high and low values for objective
C function 2 of the p=1I problem
C
C

* If highest value in vector is not feasible,
* then make following assignments and skip the
* DO WHILE block

IF(.NOT.FEASIB(PERMI (12))) THEN

HIGH= 1.
LOW =0.
GO TO 5355

END IF

.........................................................

* DO WHILE structure begins here
* Finds first feasible value in vector F2P1

LOW=F2P I1(1 2)*(- 1.)
1=1
FOUND=.FALSE.
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5350 CONTINUE

IF (FEASIB(PERMI (I))) THEN
HIGH=OBJ2(PERMI (I))
FOUND-.TRUE.

ELSE
1-1+1

END IF

IF ((.NOT.FOUND).AND.(I.LT. 12)) THEN
GO TO 5350

END IF

* Next statement is reached when HIGH has been found
* or when the ONLY feasible element in the vector
* is the last element

--------------------------------------------------------

IF (.NOT.FOUND) HIGH=0

5355 CONTINUE

* Convert p=1 section of OBJ2 to utils (infeasible
* alternatives are set to zero); a lone feasible
* alternative takes on a utility of 1

RANGE=ABS(HIGH-LOW)

DO 5360 1=1,12

IF(.NOT.FEASIB(I)) THEN
OBJ2(1)=0.

ELSE
OBJ2(1)=ABS(HIGH - OBJ2(I))/RANGE

END IF

5360 CONTINUE

*P=2P2P2=P2=p2p=2p2=P2p2=p2=P2p2p2
C
C Determine high and low values for objective
C function 2 of the p=2 problem
C
C

* If highest value in vector is not feasible,
* then make following aissignments and skip thc
* DO WHILE block
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IF(.NOT.FEASIB(PERM2(66)+ 12)) THEN

HIGH-i.
LOW -0.
GO TO 5370

END IF

.........................................................

* DO WHILE structure begins here
* Finds first feasible value in vector F2P2

LOWZF2P2(66)*(. 1.)
I-1
FOUND-.FALSE.

5365 CONTINUE

IF (FEASIB(PERM2(I)+12)) THEN
HIGH=OBJ2(PERM2(I)+ 12)
FOUND=.TRUE.

ELSE
I=1+1

END IF

IF ((.NOT.FOUND).AND.(L.LT.66)) THEN
GO TO 5365

END IF

* Next statement is reached when HIGH has been found
* or when the ONLY feasible element in the vector
* is the last element

.........................................................

IF (.NOT.FOUND) HIGH=0

5370 CONTINUE

* Convert p=2 section of OBJ2 to utils (infeasible
* alternatives are set to zero; a lone feasible alternative
* takes on a utility of 1)

RANGE=ABS(HIGH-LOW)

DO 5375 1=1,66

IF(.NOT.FEASIB(I+ 12)) THEN
0B12(I+l 2)=O.

ELSE
OBJ2(I+1I2)=ABS(HIGH-OBJ2(I+1I2))/RANGE
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END IF

5375 CONTINUE

*=pin3pm3p3npn3pn3pn3=p3p3p3p3=P3zp3
C
C Determine high and low values for objective
C function 2 of the p-3 problem
C
C

* If highest value in vector is not feasible,
* then make following assignments and skip the
* DO WHILE block

IF(.NOT.FEASIB(PERM3(220)+7 8)) THEN

HIGH-i.
LOW -0.
GO TO 5385

END IF

.........................................................

* DO WHILE structure begins here
* Finds first feasible value in vector F2P3

LOWmF2P3(220)*(- 1.)
1=1
FOUND=.FALSE.

5380 CONTINUE

IF (FEASIB(PERM3(1)+78)) THEN
HIGH=OB.J2(PERM3(I)+78)
FOUND=.TRUE.

ELSE
1=1+1

END IF

IF ((.NOT.FOUND).AND.(I.LT.220)) THEN
GO TO 5380

END IF

* Next statement is reached when LOW has been found
* or when the ONLY feasible element in the vector
* is the last element

--------------------------------------------------------

IF (.NOT.FOUND) HIGH=0
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5385 CONTINUE

* Convert p=3 section of OBJ2 to utils (infeasible
* alternatives are set to zero; a lone feasible
* alternative takes on a utility of 1)

RANGE=ABS(HIGH-LOW)

DO 5390 1-1,220

IF(.NOT.FEASIB(I+78)) THEN
OBJ2(I+78)=O.

ELSE
OBJ2(I+78)-ABS(HIGH-OBJ2(I+78))/RANGE

END IF

5390 CONTINUE

OPEN (UNIT=96,FILE='UTILS.OUT',STATUS='NEW')

WRITE(96,'(IX,A)') 'OBJ FUNCTION VALUES (UTILS)'
WRITE(96,5393) 'ALT NO','OBJI','OBJ2'

5393 FORMAT (IX,A,7X,A,7X,A)
WRITE(96,*)

DO 5395 1=1,298

WRITE(96,5394) I,OBJ I (I),OBJ2(I)
5394 FORMAT(1X,16,2X,D 12.6,2X,D 12.6)

5395 CONTINUE

CLOSE(96)

RETURN

END

* SUBPROGRAM DEVCAL

* Purpose : Compute deviation from the ideal
,

* Variables: - Reals -
* OBJI : value of first objective function
* OBJ2 : value of second objective func
* tion

* ONEDEV: deviations from ideal (p=l)
* TWODEV: deviations from ideal (p=2)
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* TREDEV: deviations from ideal (p-3)
* - Integers -

*I loop counter
*X alternative number

* - Logicals -

* FEASIB: feasibility record

SUBROUTINE DEVCAL(OBJ 1,OBJ2,FEASIB,

+ ONEDEV,TWODEV,TREDEV)

REAL*8 OBJ l(298),OBJ2(298)

REAL*8 ONEDEV( 12),TWODEV(66),TREDEV(220)

LOGICAL FEASIB(298)

INTEGER I,X
C
C
C Compute deviations for p=l alternatives
C
C

DO 6000 X-1,12

IF (FEASIB(X)) THEN
ONEDEV(X)=ABS(OBJ 1(X)-I)

+ +ABS(OBJ2(X)-I)
ELSE

ONEDEV(X)=5.5555555555

END IF

6000 CONTINUE

C
C
C Compute deviations for p=2 alternatives
C
C

DO 6100 1=1,66

X=1+12

IF (FEASIB(X)) THEN
TWODEV(I)=ABS(OBJ 1(X)-i )

+ +ABS(OBJ2(X)-I)
ELSE

TWODEV(I)=5.5,555555555

END IF
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6100 CONTINUE

C
C
C Compute deviations for p-3 alternatives
C
C

DO 6200 1-1,220

X-1+78

IF (FEASIB(X)) THEN
TREDEV(I)mABS(OBJ 1 (X)-i1)

+ +ABS(OBJ2(X)-1)
ELSE

TREDEV(I)m5.5555555555

END IF

6200 CONTINUE

C
C
C Print ONEDEV, TWODEV, and TREDEV to file
C
C

OPEN(UNIT=95,FILE='DEVIAT.OUT',STATUS='NEW')

WRITE(95,*)
WRIT -.(95,'(IX,A)')'DEVIATION FROM IDEAL (IN UTILS)'
WRITE(95,*)
WRITE(95,6201) 'ALT NO', 'DEVIATION'

6201 FORMAT(IX,A,6X,A)
WRITE(95,*)

DO 6202 1=1,12
WRITE(95,6205) 1, ONEDEV(I)

6202 CONTINUE

DO 6203 1=1,66
WRITE(95,6205) 1+12, TWODEV(I)

6203 CONTINUE

DO 6204 1=1,220
WRITE(95,6205) 1+78, TR EDEV(I)

6204 CONTINUE

6205 FORMAT(]I X,14,8X,D1I2.6)

CLOSE(95)

RETURN
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END

* SUBPROGRAM PRIORI

* Purpose : Rank alternatives based on deviation from
* ideal
,

* Variables: - Reals -
* ONEDEV: deviation from ideal (p.-)
* TWODEV: deviation from ideal (p=2)
* TREDEV: deviation from ideal (p--3)
* - Integers -

* I : loop counter
* ONEPRM: permutation vector (p=l)
* TWOPRM: permutation vector (p.2)
* TREPRM: permutation vector (p=3)
,

* Subprograms"
* RSOPT - subroutine to sort real array
* oy algebraic value and return the
* permutations. Permutations are
* return in vectors ONEPRM, TWOPRM,
* and TREPRM.

SUBROUTINE PRIORI(ONEDEV,TWODEV,TREDEV,

+ ONEPRMTWOPRM,TREPRM)

REAL*8 ONEDEV(I 2),TWODEV(66),TREDEV(220)

INTEGER ONEPRM( 12),TWOPRM(66),TREPRM(220)

C
C
C Initialize the permutation vectors
C
C

DO 7000 I= i,12
ONEPRM(I)=I

7000 CONTINUE

DO 7100 1=1,66
TWOPRM(I)=I

7100 CONTINUE

DO 7200 1=1,220
TREPRM(I)=I

7200 CONTINUE

CALL RSORT (12,ONEDEV,ONEPRM)
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CALL RSORT (66,TWODEV,TWOPRM)

CALL RSORT (220,TREDEV,TREPRM)

RETURN

LND

* SUBPROGRAM PRTOUT

* Purpose : Print out results
,

* Variables: - Reals -
* EXPECT: expected value (number of blocks)
* OBJI : value of first objective function
* OBJ2 : value of second objective func
* tion
* ONEDEV: deviation from ideal (p=1)
* TWODEV: deviation from ideal (p=2)
* TREDEV: deviation from ideal (p=3)
* IDLPI : y-space coord of ideal (p-i)
* IDLP2: y-sl.ace coord of ideal (p=2)
* IDLP3 : y-space coord of ideal (p=3)
,

* Note: vectors of deviation from ideal
* have previously been sorted in
* ascending order. The ???PRM integer
* vectors are the associated permutation vectors.

* - Integers -
* I : loop counter
* J :" "

* K :"
* X : alternative number
* FEA? : number of feasibles in p=?
* EFF? : number of efficients in p=?

SUBROUTINE PRTOUT (EXPECT,OBJ I,OBJ2,
+ ONEDEV,TWODEV,TREDEV,
+ ONEPRMTWOPRM,TREPRMIDLP I,IDLP2,IDLP3,
+ FEA I,FEA2,FEA3,EFF I,EFF2,EFF3)

REAL*8 EXPECT( 12,12,6),OBJ I (298),OBJ2(298)

REAL*8 ONEDEV( 12),TWODEV(66),TREDEV(220)

REAL*8 IDLPI(2),IDLP2(2),IDLP3(2)

INTEGER ONEPRM( 12),TWOPRM(66),TREPRM(220)
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INTEGER I,JK,X

INTEGER FEAI1,FEA2,FEA3,EFF I,EFF2,EFF3

OPEN(UNIT-80,FILE-'RESULTS.OUT',STATUS='NEW')
C
C
C Print p-i alternatives in ascending order of deviation
C from the ideal
C
C

WRITE(80,*)
WRITE(80,*)
WRITE(80,'(I X,A)') 'TOP 12 ALTERNATIVES (P=I)'
WRITE(80,*)
WRITE(80,8440) 'NUMBER FEASIBLE -',FEAl,' OF 12'
WRITE(80,8441) 'NUMBER IN N-SET -',EFFl
WRITE(80,8450) 'IDEAL OBJI- ',IDLP1(l)
WRITE(80,8450) 'IDEAL OBJ2- ',IDLP1(2)
WRITE(80,*)
WRITE(80,8500) 'ALT NO','OBJ 1 ','OBJ2','DEVIATION'

DO 8200 1-1,12

WRITE(80,8600) ONEPRM(I),OBJI(ONEPRM(I)),
+ OBJ2(ONEPRM(I)),ONEDEV(I)

8200 CONTINUE
C
C
C Print p=2 alternatives in ascending order of deviation
C from the ideal (TOP 12)
C
C

WRITE(80,*)
WRITE(80,*)
WRITE(80,'(1 X,A)') 'TOP 12 ALTERNATIVES (P=2)'
WRITE(80,*)
WRITE(80,8440) 'NUMBER FEASIBLE= ',FEA2, 'OF 66'
WRITE(80,844 1) 'NUMBER IN N-SET= '.EFF2
WRITE(80,8450) 'IDEAL OBJ1= ',IDLP2(1)
WRITE(80,8450) 'IDEAL 0BJ2= ',IDLP2(2)
WRITE(80,*)
WRITE(80,8500) 'ALT NO','OBJl1','OBJ2','DEVIATION'

DO 8300 1=1,12

WRITE(80,8600) TWOPRM(I)+ 12,
+ OBJ I (T WOPRM(I)+ 12),
+ OBJ2(TWOPRM(I)+12),
+ TWODEV(I)

8300 CONTINUE
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C
C
C Print p-3 alternatives in ascending order of deviation
C from the ideal (TOP 12)
C
C

WRITE(80,*)
WRITE(80,*)
WRITE(80,'( IX,A)') 'TOP 12 ALTERNATIVES (P-3)'
WRITE(80,*)
WRITE(80,8440) 'NUMBER FEASIBLE- ',FEA3, ' OF 220'
WRITE(80,844 1) 'NUMBER IN N-SET- ',EFF3
WRITE(80,8450) 'IDEAL OBJ I- ',IDLP3(l)
WRITE(80,8450) 'IDEAL OBJ2. ',IDLP3(2)
WRITE(80,*)
WRITE(80,8500) 'ALT NO','OBJ I','OBJ2','DEVIATION'

DO 8400 1-1,12

WRITE(80,8600) TREPRM(I)+78,
+ OBJI(TREPRM(I)+78),
+ OBJ2(TREPRM(I)+78),
+ TREDEV(I)

8400 CONTINUE

8440 FORMAT( 1X,A,15,A)
8441 FORMAT(1X,A,15)
8450 FORMAT(lX,A,1X,D12.7)
8500 FORMAT(1 X,A,9X,A,1II X,A,8X,A)
8600 FORMAT(2X,13,3X,3(3X,F 12.10))

C
C
C Print expected value of number of useable blocks
C
C

WRITE(80,*)
WRITE(80,*)
WRITE(80,*)

DO 8650 K=1,6

WRITE(80,'(1X,A,l2)') 'EXPECTED NUMBER OF OBS FOR SAT',K
WRITE(80,'(1X,A)') 'LOCATIONS (ROWS) MONTHS (COLS)'
WRITE(80,*)

DO 8640 1=1,12

WRITE(80,'( I 2(F6.0))')(EXPECT(I,J,K),J= 1, 12)

8640 CONTINUE
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WRI 11(80,*l

8650 CONTINUE

C
C
C Print legend of alternative numbers
C
C

OPEN(UNITm8 1 .FILE.-' LTLST.OUT',STATUS-'NEW')

WRI rE(8 I ,*)
WRITE(81,'(IX,A)') 'ALTERNATIVE NUMBER LEGEND (P=Il
WRITE(8 1 ,*)
WRITE(8 l,'(1 X,A)') 'ALT NO SITE NO'

DO 8700 X-1,12

WRITE(8 1,'( 1I3,!8)') X,X

8700 CONTINUE

WRITE(8 1 ,)
WRITE(81,'(lX,A)') 'ALTERNATIVE NUMBER LEGEND (P=2)'
WRITE(8 1 ,)
WRITE(81l,'(1lX,A)') 'ALT NO SITE NO'

X- 12
DO 8800 1=1,11

DO 8790 J=1+1,12

X=X+l
WRITE(8 1,8780) X,1,'-',J

8780 FORMAT(3X,13,2X.3",A,I2)

8790 CONTINUE
8800 CONTINUE

WRITE(8 ,*)
W RITF(8 l,'(1X,A)') 'ALTERNATIVE NUMBER LEGEND (P=3'
WRITE(8 I ,*)
WRITE(81l,'(1IX,A)') 'ALT NO SITE NO'

X=78
DO 8900 1=1,10

DO 8890 J=I+1,l11
DO 8880 K=J+I,12

X=Xi-l
WRITE(8 1,8870) X,I,'-',J,'-',K

8870 FORMAT(3X,13,2X,12,A,12,A,12)

8880 CONTINUE
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8890 CONTINiTT,
8900 CONTINUE

CLOSE(80)

CLOSE(81)

RETURN

END

* SUBPROGRAM RSORT

* Purpose : Sort real array in ascending order and
* ruturn sorted array along with permutation
* vector

* Var'ables: -Reals -
* RARRAY: array to be sorted
* - Integers -
* IJ loop counters
* N number of elements
* LOW : index number of lowest value
* LIMIT: maximum si.:e of RARRAY

* Subprograms:
* RSWAP - swap two pairs of values
,

* Reference : This subroutine is an adaptation of a
* selection sort subroutine presented by:
* McCracken D. and Salmon W. "Computing for
* Engineers and Scientists with FORTRAN 77".
* New York: John Wiley & Sons Inc, 1988.

SUBROUTINE RSORT(N,RARRAY,PERM)

INTEGER I,J,N,LOW

INTEGER PERM(N)

REAL*8 RARRAY(N)

DO 9100 I=I,N-l

C -- Find LOW, the remaining lowest value
C in unsorted part of the array

LOW=I
DO 9000 J=(I+I),N
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IF(RARRAY(J).LTrRARRAY(LOW)) LOW-J

9000 CONTINUE

C -- Swap lowest element found with element
C at the beginning of thes unsorted part
C of the array

CALL RSWAP(RARRAY(I),RARRAY(LOW),PERM(I),PERMv(LOW))

9100 CONTINUE

RETURN

END

* SUBPROGRAM RSWAP

*Purpose :Swap two real values and two integer values

*Variables: Reals -

* X,Y :values to be swapped
* RTEMP: temporary storage
* - Integers -

* 14 : values to be swapped
* TEMP : temporary storage

SUBROUTINE RSWAP(X,Y,I,J)

INTEGER I,J,TEMP

REAL*8 X,Y,RTEMP

TEMP=I
I=J
J=71NMP

R 'fEMP=X
x=Y
Y.=R'rFEMP

RETURN

END
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Appendix V: Case Study - Input

<PROBA.DAT>

61 54 46 37 28 22 24 33 42 51 59 63
64 55 46 34 22 12 16 28 40 51 61 66
59 53 46 38 31 26 28 35 43 50 57 61
58 53 46 39 32 28 29 36 43 50 57 60
58 53 46 39 32 28 29 36 43 50 57 60
100 85 33 000 000 000 000 000 17 ,1 100 100
68 57 45 30 11000000 23 37 52 64 71
73 59 44 24000000000 12 27 53 68 78
57 52 47 40 34 31 32 38 44 50 55 58
60 53 46 38 30 25 29 34 43 50 58 61
65 56 45 32 18000 11 27 40 53 62 68
61 54 46 36 27 20 23 32 42 51 59 63

<PROBB.DAT>

86 88 92 94 95 97 98 99 96 91 88 88
89 92 93 94 96 97 97 95 91 87 88 90
97 97 98 99 100 100 100 100 100 98 96 96
96 96 96 97 100 100 100 100 99 99 97 96
71 71 72 84 90 90 91 95 90 84 77 71
97 97 98 00 00 00 00 00 95 97 97 96
93 90 96 97 97 00 00 98 97 95 93 95
99 99 100 100 00 00 00 99 100 100 100 99
95 97 97 97 99 100 100 100 100 99 97 96
96 97 97 98 98 98 99 99 98 98 98 97
97 97 99 99 99 00 100 100 99 97 97 96
100 100 100 100 99 99 99 100 100 99 99 99

<PROBC.DAT>
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 lO0 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 10o 100 100 100 100 100 100 100 100 100
100 100 1010 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100 100
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<PROBD.DAT>
28 000 000 100 100 100
30 000 100 100 100 000

27 000 100 100 100 100
27 100 100 100 000 000
27 100 100 100 000 000
33 000 000 000 000 000
31 100 100 000 000 000
32 000 000 000 000 000
26 100 100 100 100 000
26 000 100 100 100 100
31 000 000 100 100 100
29 000 100 100 100 100

<PROBE.DAT>

SATELLITE 1
28 31 38 37 32 31 28 38 37 33 34 30
47 47 50 35 27 29 35 40 24 20 29 42
14 21 35 39 38 45 49 52 46 42 19 15
39 39 36 34 33 41 41 45 43 40 34 36
21 19 27 26 22 26 29 29 32 25 23 20
51 49 50 00 00 00 00 00 21 37 45 54
44 46 43 39 16 00 00 19 21 19 30 44
43 43 51 42 00 00 00 31 23 22 37 42
20 27 32 36 39 47 50 47 46 36 23 19
42 40 41 49 51 52 54 58 46 48 41 38
35 38 36 43 36 00 28 33 34 24 23 31
35 35 34 34 31 31 35 38 32 36 28 31

SATELLITE 2
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
44 42 41 42 40 47 52 51 49 46 41 43
27 23 31 33 27 31 39 32 35 31 29 25
00 00 00 00 00 00 00 00 00 00 00 00
48 47 45 45 19 00 00 20 24 21 34 49
00 00 00 00 00 00 00 00 00 00 00 00
25 30 36 45 45 54 60 52 52 42 28 24
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

SATELLITE 3
00 00 00 00 00 00 00 00 00 00 00 00
51 50 54 43 31 34 45 42 28 23 33 48
17 23 37 46 42 49 59 56 50 45 23 17
43 42 41 43 39 47 52 51 49 45 42 42
27 23 30 34 27 31 39 32 37 30 30 25
00 00 00 00 00 00 00 00 00 00 00 00
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47 48 45 45 20 00 00 20 24 21 34 49
00 00 00 00 00 00 00 00 00 00 00 00
25 31 37 46 45 55 62 53 52 42 28 25
44 39 37 46 45 55 60 60 50 50 43 41
00 00 00 00 00 00 00 00 00 00 00 00
38 38 37 42 36 36 44 42 37 42 32 36

SATELLITE 4
31 33 41 44 33 34 33 39 40 36 36 35
51 49 55 44 32 33 44 44 28 23 34 47
19 28 40 49 45 53 61 58 52 48 25 19
44 41 40 41 39 47 52 50 49 45 40 42
26 21 29 31 25 29 36 30 33 27 26 23
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 0u
24 33 37 46 45 54 62 53 51 42 28 23
47 41 45 55 51 57 62 59 51 51 44 44
37 40 38 49 41 00 34 33 37 26 26 34
41 40 40 45 39 39 47 45 40 43 35 38

SATELLITE 5
33 37 43 45 35 36 35 40 41 37 37 35
51 50 54 43 31 33 44 42 28 22 34 47
20 26 41 48 47 53 61 60 54 50 26 21
40 40 37 40 37 43 49 47 45 43 37 39
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
25 33 37 45 45 53 60 51 50 41 27 24
45 40 45 55 51 56 62 60 52 50 45 44
39 42 40 52 41 00 36 35 39 29 27 36
41 40 40 45 39 39 47 45 40 43 35 38

SATELLITE 6
33 33 43 45 35 35 35 41 41 37 37 35
49 47 52 40 30 29 41 40 25 21 32 45
18 24 41 50 45 52 61 59 53 ,:8 25 19
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
44 39 44 55 49 55 60 60 50 49 43 42
39 41 41 52 42 00 38 37 39 28 27 37
39 38 38 44 37 37 46 44 38 42 33 37

END-DATA
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<PROBF.DAT>

s,,TELLITE I
100 99 97 100 100 100 100 1('u 89 99 100 100
100 100 100 100 100 100 000 1N 90 99 100 100
100 100 100 100 100 100 100 99 8t 99 100 100
100 99 85 100 000 000 000 100 84 99 100 100
100 100 82 98 000 000 000 000 92 100 100 100
100 100 100 000 000 000 000 000 1o, 100 100 100
100 100 98 100 100 000 000 000 96 100 100 100
100 100 100 100 100 000 000 100 98 100 100 100
100 100 100 000 000 000 100 96 82 99 100 100
100 100 100 100 100 100 100 99 86 99 100 100
100 99 98 100 100 000 100 100 94 99 100 100
100 100 100 100 100 100 100 100 88 99 100 100

SATELLITE 2
000 000 000 000 000 000 000 000 000 u00 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000

SATELLITE 3
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100

SATELLITE 4
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
100 IOC 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 iO0 100 100 91 97 100 100
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100100 91 97 100 100 100 100 91 97 100100
100100 91 97 100 100 100 100 91 97 100100

SATELLITE 5
100100 91 97 100 100 100 100 91 97 100 100
100100 91 97 100 100 100 100 91 97 100100
100100 91 97 100 100 100 100 91 97 100 100
100100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100

SATELLITE 6
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000 000 000 000
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100
100 100 91 97 100 100 100 100 91 97 100 100

END-DATA

<OBSREQ.DAT>

30 30 30 30 30 30

286



Appendix W: Case Study - Output

<Output of RESULTS.O UT>

TOP 12 ALTERNATIVES (P-I)

NUMBER FEASIBLE - 0 OF 12
NUMBER IN N-SET - 0
IDEAL OBJI- .OOOOOOOD+00
IDEAL OBJ2- .1000000D+21

ALT NO OBJI OBJ2 DEVIATION
1 0.0000000000 0.0000000000 5.5555555555
2 0.0000000000 0.0000000000 5.5555555555
3 0.0000000000 0.0000000000 5.5555555555
4 0.0000000000 0.0000000000 5.5555555555
5 0.0000000000 0.0000000000 5.5555555555
6 0.0000000000 0.0000000000 5.5555555555
7 0.0000000000 0.0000000000 5.5555555555
8 0.0000000000 0.0000000000 5.5555555555
9 0.0000000000 0.0000000000 5.5555555555
10 0.0000000000 0.0000000000 5.5555555555
11 0.0000000000 0.0000000000 5.5555555555
12 0.0000000000 0.0000000000 5.5555555555

TOP 12 ALTERNATIVES (P-2)

NUMBER FEASIBLE- 12 OF 66
NUMBER IN N-SET- 10
IDEAL OBJI- .1635424D+06
IDEAL OBJ2- .3182542D+07

ALT NO OBJI OBJ2 DEVIATION
15 0.3573576935 0.7414240023 0.9012183041
55 0.5074134196 0.5487584640 0.9438281164
35 0.2653469046 0.7818326575 0.9528204379
57 0.3023568314 0.7348871726 0.9627559960
39 0.7579334850 0.2772144489 0.9648520661
20 0.4925865804 0.5323157265 0.9750976931
75 0.7949434118 0.2267222203 0.9783343678
48 0.8647711131 0.1387734001 0.9964554868
16 0.0000000000 1.0000000000 1.0000000000
73 1.0000000000 0.0000000000 1.0000000000
50 0.6597145250 0.3093213101 1.0309641649
34 0.6227045981 0.3459432993 1.0313521026
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TOP 12 ALTERNATIVES (P=3)

NUMBER FEASIBLE- 90 OF 220
NUMBER IN N-SET- 23
IDEAL OBJI- .2369832D+06
IDEAL OBJ2- .2479417D+07

ALT NO OBJI OBJ2 DEVIATION
273 0.5524938430 0.7299858072 0.7175203497
103 0.7636153008 0.5073201559 0.7290645433
283 0.7251571578 0.5448532198 0.7299896223
185 0.6227261163 0.6425187066 0.7347551771
89 0.6328504747 0.6310528198 0.7360967055

240 0.7534909423 0.5083462058 0.7381628519
120 0.4510513917 0.8101480309 0.7388005774
289 0.5402020435 0.7182611271 0.7415368295
105 0.6528433128 0.6022687666 0.7448879206
225 0.4794429220 0.7729745650 0.7475825130
275 0.4417218551 0.7967710813 0.7615070637
242 0.6427189544 0.5957637864 0.7615172592

EXPECTED NUMBER OF OBS FOR SAT 1
LOCATIONS (ROWS) MONTHS (COLS)

367. 329. 390. 311. 213. 160. 165. 310. 321. 379. 427. 416.
717. 575. 573. 290. 153. 87. 0. 285. 204. 235. 404. 668.
193. 235. 380. 342. 284. 273. 331. 434. 397. 491. 243. 212.
523. 428. 326. 300. 0. 0. 0. 391. 359. 473. 439. 500.
208. 156. 177. 195. 0. 0. 0. 0. 266. 253. 235. 205.
1458. 1075. 476. 0. 0. 0. 0. 0. 97. 645. 1245. 1527.
770. 590. 504. 304. 47. 0. 0. 0. 194. 260. 478. 821.
888. 648. 641. 279. 0. 0. 0. 105. 168. 333. 696. 927.
251. 286. 339. 0. 0. 0. 371. 398. 373. 410. 276. 246.
562. 431. 425. 410. 348. 286. 360. 449. 374. 541. 524. 522.
611. 511. 435. 365. 178. 0. 85. 247. 339. 338. 370. 560.
553. 442. 405. 307. 215. 154. 206. 315. 296. 466. 410. 501.
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EXPECTED NUMBER OF OBS FOR SAT 2
LOCATIONS (ROWS) MONTHS (COLS)

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2187.1723.1471.1332.1143.1137.1346.1639.1640.1972.1959.2211.
993. 698. 834. 906. 694. 675. 919. 977. 1065. 1128. 1100. 951.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2710. 1944.1579. 1097. 181. 0. 0. 402. 677. 898. 1748. 2951.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1209.1220.1333.1463.1352.1446.1714.1764.1799.1800. 1291. 1193.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

EXPECTED NUMBER OF OBS FOR SAT 3
LOCATIONS (ROWS) MONTHS (COLS)

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2594. 2040. 1877. 1152. 585. 342. 624. 997. 801. 884. 1531. 2546.
869. 954. 1355. 1450. 1162. 1101. 1475. 1750. 1690. 1910. 1087. 889.
2138.1723.1471.1363.1114.1137.1346.1639.1640.1929.2006.2160.
993. 698. 807. 933. 694. 675. 919. 977. 1126. 1091. 1138. 951.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2654. 1986.1579. 1097. 191. 0. 0. 402. 677. 898. 1748. 2951.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1209.1261.1370.1496.1352.1473.1771.1798.1799.1800.1291.1243.
2263.1617.1341.1436.1181. 1164.1538.1803.1657.2122.2112.2166.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
2070. 1655.1383. 1267. 859. 616. 894. 1200. 1222. 1836. 1615. 2005.

EXPECTED NUMBER OF OBS FOR SAT 4
LOCATIONS (ROWS) MONTHS (COLS)

1452. 1265. 1410. 1283. 784. 627. 693. 1138. 1268. 1447. 1615. 1732.
2594. 1999. 1912. 1179. 603. 332. 610. 1045. 801. 884. 1577. 2493.
971. 1161.1465.1545.1245.1191.1525.1812.1758.2037.1182. 993.
2187.1682.1435.1300.1114.1137.1346.1607.1640.1929. 1911.2160.
956. 637. 780. 851. 643. 631. 848. 916. 1004. 982. 986. 875.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1160.1220.1370.1496.1352.1446.1771.1798.1764.1800.1291. 1143.
2417.1700.1631.1717.1339.1207.1589.1773.1690.2164.2161.2324.
2083. 1752.1375.1301. 652. 0. 334. 795. 1152. 1158. 1351. 1982.
2233. 1742.1495.1358. 931. 667. 955. 1286. 1321. 1880. 1766. 2116.
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EXPECTED NUMBER OF OBS FOR SAT 5
LOCATIONS (ROWS) MONTHS (COLS)

1546. 1418. 1478. 1312. 831. 664. 735. 1167. 1300. 1487. 1660. 1732.
2594.2040. 1877. 1152. 585. 332. 610. 997. 801. 845. 1577. 2493.
1022. 1078. 1502. 1513. 1301. 1191. 1525. 1875. 1326.2122. 1229. 1098.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

1209. 1342. 1370. 1463. 1352. 1420. 1714. 1730. 1730. 1738. 1245. 1193.
2314. 1658. 1631. 1717. 1339. 1185. 1589. 1803. 1723. 2122. 2210. 2324.
2195. 1840. 1448. 1381. 652. 0. 354. 844. 1214. 1291. 1403. 2098.
2233. 1742. 1495. 1358. 931. 667. 955. 1286. 1321. 1880. 1766. 2116.

EXPECTED NUMBER OF OBS FOR SAT 6
LOCATIONS (ROWS) MONTHS (COLS)

1546. 1265. 1478. 1312. 831. 645. 735. 1196. 1300. 1487. 1660. 1732.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

920. 995. 1502. 1576. 1245. 1168. 1525. 1844. 1792. 2037. 1182. 993.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2263. 1617. 1595. 1717. 1286. 1164. 1538. 1803. 1657. 2079. 2112. 2219.
2195. 1796. 1484. 1381. 668. 0. 373. 892. 1214. 1247. 1403. 2156.
2124. 1655. 1420. 1328. 883. 633. 935. 1257. 1255. 1836. 1665. 2060.

<Output of FEASIB.OUT>

FEASIBILITY LIST
IF 2F 3F 4F 5F
6F 7F 8F 9F 10F
II F 12 F 13 F 14 F 15 T
16 T 17 F 18 F 19 F 20 T
21 F 22 F 23 F 24 F 25 F
26 F 27 F 28 F 29 F 30 F
31 F 32 F 33 F 34 T 35 T
36 F 37 F 38 F 39 T 40 F
41 F 42 F 43 F 44 F 45 F
46 F 47 F 48 T 49 F 50 T
51 F 52 F 53 F 54 F 55 T
56 F 57 T 58 F 59 F 60 F
61 F 62 F 63 F 64 F 65 F
66 F 67 F 68 F 69 F 70 F
71 F 72 F 73 T 74 F 75 T
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76 F 77 F 78 F 79 F 80 T
81 T 82 F 83 F 84 F 85 T
86 F 87 I 88 F 89 T 90 T
91 F 92 F 93 F 94 T 95 F
96 F 97 F 98 T 99 T 100 T

101 T 102 T 103 T 104 T 105 T
106 T 107 T 108 T 109 T 10 T
11 T 112 T 113 F 114 F 115 T
116 F 117 F 118 F 119 F 120 T
121 F 122 F 123 F 124 T 125 F
126 F 127 F 128 T 129 T 130 T
131 F 132 F 133 F 134 T 135 T
136 F 137 F 138 F 139 T 140 F
141 F 142 F 143 F 144 F 145 F
146 F 147 F 148 T 149 F 150 T
151 F 152 F 153 F 154 F 155 T
156 F 157 T 158 F 159 F 160 F
161 F 162 F 163 F 164 F 165 F
166 F 167 F 168 F 169 F 170 F
171 F 172 F 173 T 174 F 175 T
176 F 177 F 178 F 179 T 180 T
181 T 182 T 183 T 184 T 185 T
186 T 187 T 188 T 189 T 190 T
191 T 192 T 193 T 194 F 195 F
196 T 197 F 198 F 199 F 200 F
201 T 202 F 203 F 204 F 205 T
206 F 207 F 208 F 209 T 210 T
211 T 212 F 213 F 214 F 215 F
216 F 217 F 218 F 219 T 220 F
221 T 222 F 223 F 224 F 225 T
226 F 227 T 228 F 229 F 230 T
231 F 232 T 233 F 234 T 235 F
236 T 237 T 238 F 239 T 240 T
241 T 242 T 243 F 244 F 245 F
246 T 247 F 248 T 249 F 250 F
251 T 252 F 253 T 254 F 255 T
256 F 257 T 258 T 259 F 260 T
261 T 262 T 263 T 264 F 265 F
266 F 267 F 268 F 269 F 270 F
271 F 272 F 273 T 274 F 275 T
276 F 277 F 278 F 279 F 280 F
281 F 282 F 283 T 284 F 285 T
286 F 287 F 288 F 289 T 290 F
291 T 292 F 293 F 294 F 295 T
296 T 297 T 298 F
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<Output of EFFSET.OUT>

EFFICIENT SET
IF 2F 3F 4F 5F
6F 7F 8F 9F 10F
11 F 12 F 13 F 14 F 15 T
16 T 17 F 18 F 19 F 20 F
21 F 22 F 23 F 24 F 25 F
26 F 27 F 28 F 29 F 30 F
31 F 32 F 33 F 34 T 35 T
36 F 37 F 38 F 39 T 40 F
41 F 42 F 43 F 44 F 45 F
46 F 47 F 48 T 49 F 50 T
51 F 52 F 53 F 54 F 55 T
56 F 57 F 58 F 59 F 60 F
61 F 62 F 63 F 64 F 65 F
66 F 67 F 68 F 69 F 70 F
71 F 72 F 73 T 74 F 75 T
76 F 77 F 78 F 79 F 80 F
81 F 82 F 83 F 84 F 85 F
86 F 87 F 88 F 89 T 90 F
91 F 92 F 93 F 94 F 95 F
96 F 97 F 98 F 99 T 100 F
101 F 102 F 103 T 104 F 105 T
106 T 107 T 108 T 109 F 110 F
111 F 112 F 113 F 114 F 115 F
116 F 117 F 118 F 119 F 120 T
121 F 122 F 123 F 124 F 125 F
126 F 127 F 128 T 129 F 130 F
131 F 132 F 133 F 134 F 135 F
136 F 137 F 138 F 139 F 140 F
141 F 142 F 143 F 144 F 145 F
146 F 147 F 148 F 149 F 150 F
151 F 152 F 153 F 154 F 155 F
156 F 157 F 158 F 159 F 160 F
161 F 162 F 163 F 164 F 165 F
166 F 167 F 168 F 169 F 170 F
171 F 172 F 173 F 174 F 175 F
176 F 177 F 178 F 179 F 180 F
181 F 182 F 183 F 184 T 185 T
186 T 187 F 188 F 189 F 190 F
191 F 192 F 193 F 194 F 195 F
196 F 197 F 198 F 199 F 200 F
201 F 202 F 203 F 204 F 205 F
206 F 207 F 208 F 209 T 210 F
211 F 212 F 213 F 214 F 215 F
216 F 217 F 218 F 219 F 220 F
221 F 222 F 223 F 224 F 225 T
226 F 227 T 228 F 229 F 230 F
231 F 232 F 233 F 234 F 235 F
236 F 237 T 238 F 239 F 240 T
241 T 242 F 243 F 244 F 245 F
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246 T 247 F 248 T 249 F 250 F
251 F 252 F 253 F 254 F 255 F
256 F 257 F 258 F 259 F 260 F
261 F 262 F 263 F 264 F 265 F
266 F 267 F 268 F 269 F 270 F
271 F 272 F 273 T 274 F 275 F
276 F 277 F 278 F 279 F 280 F
281 F 282 F 283 T 284 F 285 F
286 F 287 F 288 F 289 F 290 F
291 F 292 F 293 F 294 F 295 F
296 T 297 F 298 F

<Output of ALTLST.OUT>

ALTERNATIVE NUMBER LEGEND (P=1)

ALT NO SITE NO
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
II 11
12 12

ALTERNATIVE NUMEER LEGEND (P=2)

ALT NO SITE NO
13 1-2
14 1-3
15 1-4
16 1-5
17 1-6
18 1-7
19 1-8
20 1-9
21 1-10
22 1-11
23 1-12
24 2-3
25 2-4
26 2-5
27 2-6
28 2-7
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29 2-8
30 2-9
31 2-10
32 2-11
33 2-12
34 3-4
35 3-5
36 3-6
37 3-7
38 3-8
39 3-9
40 3-10
41 3-11
42 3-12
43 4-5
44 4-6
45 4-7
46 4-8
47 4-9
48 4-10
49 4-11
50 4-12
51 5-6
52 5-7
53 5-8
54 5-9
55 5-10
56 5-11
57 5-12
58 6-7
59 6-8
60 6-9
61 6-10
62 6-11
63 6-12
64 7- 8
65 7-9
66 7-10
67 7-11
68 7-12
69 8-9
70 8-10
71 8-11
72 8-12
73 9-10
74 9-11
75 9-12
76 10-11
77 10-12
78 11-12
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ALTERNATIVE NUMBER LEGEND (P-3)

ALT NO SITE NO
79 1-2-3
80 1-2-4
81 1-2-5
82 1-2-6
83 1-2-7
84 1-2-8
85 1-2-9
86 1-2-10
87 1-2-11
88 1-2-12
89 1-3-4
90 1-3-5
91 1-3-6
92 1-3-7
93 1-3-8
94 1-3-9
95 1- 3-10
96 1- 3-11
97 1-3-12
98 1-4-5
99 1-4-6
100 1-4-7
101 1-4-8
102 1-4-9
103 1-4-10
104 1-4-11
105 1-4-12
106 1-5-6
107 1-5-7
108 1-5-8
109 1-5-9
110 1-5-10
II1 1- 5-11
112 1- 5-12
113 1-6-7
114 1.6-8
115 1-6-9
116 1-6-10
117 1-6-11
118 1-6-12
119 1-7-8
120 1-7-9
121 1- 7-10
122 1- 7-11
123 1- 7-12
124 1-8-9
125 1-8-10
126 1-8-11
127 1-8-12
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128 1-9-10
129 1-9-11
130 1-9-12
131 1-10-11
132 1-10-12
133 1-11-12
134 2-3-4
135 2-3-5
136 2-3-6
137 2- 3- 7
138 2- 3- 8
139 2-3-9
140 2-3-10
141 2-3-11
142 2-3-12
143 2-4-5
144 2-4-6
145 2-4-7
146 2-4-8
147 2-4-9
148 2-4-10
149 2-4-11
150 2-4-12
151 2-5-6
152 2-5-7
153 2- 5-8
154 2-5-9
155 2-5-10
156 2-5-11
157 2-5-12
158 2-6-7
159 2-6-8
160 2-6-9
161 2-6-10
162 2-6-11
163 2-6-12
164 2-7-8
165 2-7-9
166 2- 7-10
167 2- 7-11
168 2- 7-12
169 2-8-9
170 2-8-10
171 2- 8-11
172 2-8-12
173 2-9-10
174 2-9-11
175 2-9-12
176 2-10-11
177 2-10-12
178 2-i 1-12
179 3- 4- 5
180 3-4-6
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181 3-4-7
182 3-4-8
183 3-4-9
184 3-4-10
185 3-4-11
186 3-4-12
187 3-5-6
188 3-5-7
189 3-5-8
190 3-5-9
191 3-5-10
192 3- 5-11
193 3-5-12
194 3-6-7
195 3-6-8
196 3-6-9
197 3-6-10
198 3-6-11
199 3-6-12
200 3-7-8
201 3-7-9
202 3- 7-10
203 3-7-11
204 3- 7-12
205 3-8-9
206 3-8-10
207 3-8-11
208 3-8-12
209 3-9-10
210 3-9-11
211 3-9-12
212 3-10-11
213 3-10-12
214 3-11-12
215 4-5-6
216 4-5-7
217 4-5-8
218 4-5-9
219 4-5-10
220 4-5-11
221 4- 5-12
222 4-6-7
223 4-6-8
224 4-6-9
225 4-6-10
226 4-6-11
227 4-6-12
228 4-7-8
229 4-7-9
230 4-7-10
231 4-7-11
232 4-7-12
233 4-8-9
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23 -81
234 4-8-10
235 4-8-11
236 4-8-12
237 4-9-10
239 4-9-11
239 4-9-12
240 4-10-11
241 4-10-12
242 4-11-12
243 5-6-7
244 5-6-9
245 5-6-90
246 5-6-10
247 5-6-11

249 5-7-8
250 5-7-9
251 5- 7-10
252 5-7-11
253 5- 7-12
254 5-8-9
255 5-8-10
256 5-8-11
257 5- 8-12
258 5-9-10
259 5-9-11
260 5-9-12
261 5-10-11
262 5-10-12
263 5-11-12
264 6-7-8
265 6-7-9
266 6- 7-10
267 6-7-11
268 6- 7-12
269 6-8-9
270' 6- 8-10
271 6-8-11
272 6-8-12
273 6-9-10
274 6-9-11
275 6-9-12
276 6-10-11
277 6-10-12
278 6-11-12
279 7-8-9
280 7-8-10
281 7-8-1.'
282 7- 8-12
283 7-9-10
284 7-9-11
285 7-9-12
286 7-10-11
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2
287 7-10-12
288 7-11-12

289 8-9-10
290 8-9-11
291 8-9-12
292 8-10-11
293 8-10-12
294 8-11-12
295 9-10-11
296 9-10-12
297 9-11-12
298 10-11-12
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